

Role of Contrast Enhanced MRI and Diffusion Weighted (DWI) MR image in Evaluation of Ovarian Masses

Thesis

Submitted for Partial Fulfillment of Master Degree In Radiodiagnosis

By Aisha Abdul Hameed Ali

(M.B;B.Ch.)

Faculty of medicine - University of Baghdad

Supervised By

Prof Dr. Khalid Esmat Allam

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Bassiouny

Lecturer of Radiodiagnosis Faculty of Medicine - Ain shams University

> Faculty of Medicine Ain Shams University 2016

دور الرنتن المغناطيسى متعدد المراحل بالصبغه والرنين المغناطيسى بخاصيه الإنتشار في تقييم أورام المبيض

رســـالة توطئة للحصول على درجة الماجستير في الأشعه التشخيصيه

مقدمة من الطبيبة / عائشة عبد الحميد على بكالوريوس الطب والجراحة كليه الطب- جامعه بغداد

تحت اشراف أ.د/ خالد عصمت علام أستاذ الأشعة التشخيصية كلية الطب - جامعة عين شمس

د/ أحمد محمد بسيونى مدرس الاشعة التشخيصية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2016

"First And Foremost, Thanks to ALLAH, Who granted me the power to accomplish this study.

I wish to express my deep gratitude and respect to **Prof. Dr.**Khalid Esmat Allam, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. I would like to thank his for the patience and sincerity to instruct me through the study, I am also so grateful for the precious time he offered me. I would like to thank his for the great help, her incessant valuable support and guidance.

I would like to express my thanks and gratitude to **Dr**.

Ahmed Mohamed Bassiouny, Lecturer of Radiodiagnosis,

Faculty of Medicine, Ain Shams University, for his supervision,
help, advice and his scientific generosity contributed a lot to the
final shape of this study.

LIST OF CONTENTS

	Page
List of Abbreviations	I
List of Tables	III
List of Figures	IV
Introduction	1
Aim of the Work	4
• Chapter (1):Ovarian anatomy	5
• Chapter (2):pathology and MRI manifestation of ovarian tumors	16
Chapter (3):DWI & CONTRAST ENHANCE technique	52
Patients and Methods	86
• Chapter (4):result	92
Summary and Conclusion	116
Recommendations	124
References	125
Arabic Summary	

LIST OF ABBREVIATIONS

MRI	Magnetic resonance image
DWI	Diffusion weighted image
WHO	World health organization
TNM	(tumor,node,metastasis)
FIGO	International federation of obstetrics and gynecology

LIST OF TABLES

Table 1	Histological classification of ovarian	19
	tumours adapted from WHO	
Table 2	Classification of adnexal masses based on	20
	morphological appearance	
Table 3	Chart summarizes the typical imaging	21
	features of the different ovarian lesions.	
Table 4	FIGO and TNM staging systems for ovarian	
	cancer	
Table 5	Showing one of the protocols used for	23
	applying the DWI for the pelvis	
Table 6	For the Interpretation of DWI Findings	59
Table7	Histology distribution of the study group	92
Table8	Age distribution of the study group	93
Table9	Relation between pathology and age	94
Table 10	Complain distribution of the study group	95
Table 11	Pathology distribution of the study group	97
Table 12	Conventional MRI distribution of the study	98
	group	
Table 13	DWI distribution of the study group	99
Table 14	Contrast enhancement distribution of the	100
	study group	
Table 15	Contrast enhanced and DWI distribution of	101
	the study group	
Table 16	Relation between pathology and contrast	102
	enhancement.	
Table 17	Relation between pathology and DWI	103
Table 18	Relation between pathology and dynamic	104
	contrast enhanced and DWI	
Table 19	Diagnostic Performance of pathology in	105
	Discrimination of conventional MRI	
Table 20	Diagnostic Performance of pathology in	106
	Discrimination of contrast enhancement	
Table 21	Diagnostic Performance of pathology in	107

	Discrimination of DWI	
Table 22	Diagnostic Performance of pathology in	
	Discrimination of dynamic contrast enhanced and DWI	

LIST OF FIGURES

No.	Figure	Page
1-	Illustration shows the ovarian fossa at the posterolateral pelvic sidewall.	6
2-	Posterior view shows the broad ligament and ovarian attachments with the fallopian tube separated from the ovary	7
3-	Sagittal view shows the mesovarium anchoring the ovary to the posterosuperior aspect of the broad ligament	8
4-	Illustration shows the suspensory ligament anchoring the ovary to the posterolateral wall of the pelvis	10
5-	View from above shows the left ovary and its attachments within the true pelvis	12
6-	Illustration shows the ovarian artery and vein without the overlying peritoneum and suspensory ligament	13
7-	Serous cystadenoma in a 64-year-old woman	27
8-	Cystadenofibroma in a 54-year-old woman	28
9-	Cystadenofibroma in a 29-year-old woman	29
10-	Mucinous cystadenoma in a 44-year-old woman	31
11-	Borderline papillary-cystic serous tumour in a 43-year-old woman	33
12-	Borderline mucinous ovarian tumour in a 49-year-old woman	34
13-	Mature teratoma in a 33-year-old woman	36
14-	Krukenbergtumour from gastric carcinoma in a 23-year-old woman	38
15-	Serous papillary carcinoma in a 48-year-old woman	40
16-	Mucinous cystadenocarcinoma in a 57-year-old woman	40
17-	Peritoneal carcinomatosis due to disseminated ovarian papillary serous cystadenocarcinoma in a 63-year-old woman	41
18-	Endometrioid adenocarcinoma in a 57-year-old woman	42
19-	Endometrioid adenocarcinoma in a 60-year-old woman	43
20-	Yolk sac tumour in a 26-year-old woman	44
21-	Fibrothecoma in a 66-year-old woman	48

22-	Fibroma in a 44-year-old woman	49
23-	Sertoli-Leydig cell tumour in a 13-year-old woman	50
24-	Diagram showing diffusion of water molecules	54
25-	(a) Schematic illustrates the effect of a diffusion-weighted sequence on water molecules (solid circles) within highly cellular tissue or a restricted environment	55
26-	A 63-year-old woman with a left ovarian cystadeno-carcinoma	66
27-	A 51-year-old woman with bilateral ovariancystadenocarcinomas	67
28-	Stage IV serous papillary adenocarcinoma of right ovaryin a 60-year-old-woman. MR images show huge lobulated, solid lesion (arrowheads) dorsal to the uterus	68
29-	59-years-old woman with bilateral benign mucinous cystadenoma	69
30-	A 32-years-old woman with right-sided ovarian fibroma	70
31-	Recurrent ovarian cancer in a 65-years -old woman	71
32-	Postoperative changes in a 78-years-old woman with stage IIA ovarian cancer	72
33-	A 49-year-old woman from ovarian serous adenocarcinoma	73
34-	Ovarian cancer recurrence	74
35-	Treatment response of primary high-grade serous ovariancancer in a 62-year-old female	75
36-	SI-time curves of (a) benign, (b) borderline, and (c) invasive ovarian tumors	83
37-	Pie chart distribution of the study group	94
38-	Bar chart between pathology and age (years)	95
39-	Bar chart distribution of the study group	96
40-	Pie chart pathology distribution of the study group	97
41-	Pie chart DWI distribution of the study group	99
42-	Pie chart contrast enhancement distribution of the study group	100
43-	Pie chart dynamic contrast enhanced and DWI distribution of the study group	101
44-	Bar chart between pathology and contrast enhancement	102

45-	Bar chart between pathology and dynamic contrast enhanced and DWI	104
46-	Sensitivity and specificity regarding pathology and contrast enhancement	106
47-	Sensitivity and specificity regardingpathologyand DWI	107
48-	Sensitivity and specificity regarding pathologyand contrast enhancement and DWI	108

ABSTRACT

Introduction: Ovarian masses present a special diagnostic challenge when imaging findings cannot be categorized into benign or malignant pathology. Ultrasound (US), computed tomography CT, and magnetic resonance imaging are currently used to evaluate ovarian tumors. US is the first-line imaging investigation for suspected adnexal masses helping in detection and characterization of ovarian tumors.

Aim of the work: The aim of the current study is to evaluate the diagnostic value of dynamic contrast enhanced MRI and diffusion-weighted MR imaging in evaluation of ovarian masses.

Patients and Methods: Equipment used: For the MRI examination, PhilpsAchieva 1.5 Tesla closed MRI machine, pelvic phased-array Torso coil. Study Population: The study included women presenting with adnexal masses, who are planned to undergo laparotomy.

Keywords: MRI, DWI, Contrast Enhanced, Radiodiagnosis

INTRODUCTION

Ovarian masses present a special diagnostic challenge when imaging findings cannot be categorized into benign or malignant pathology. Ultrasound (US), computed tomography CT, and magnetic resonance imaging are currently used to evaluate ovarian tumors (*Pierce et al., 2008*).

US is the first- line imaging investigation for suspected adnexal masses helping in detection and characterization of ovarian tumors(*Pierce et al.*, 2008).

An adnexal mass is defined as indeterminate on US when it cannot be confidently placed into either the benign or malignant category (*Spencer*, 2010).

CT is commonly performed in evaluation of a suspected ovarian malignancy, but it exposes patients to radiation (*Valentini et al.*, 2012).

MRI can be a valuable problem solving tool, an adjunctive modality for evaluating adnexal lesions, useful to give also surgical planning information without radiation exposure (*Valentini et al.*, 2012).

It is able to identify different types of tissue contained in pelvis masses, distinguishing benign from malignant ovarian tumors, with an overall accuracy of 88% to 93% (*Valentini et al.*, 2012). However, the only definitive diagnosis of an ovarian mass is through histology (*Yeoh et al.*, 2015).

Functional imaging techniques are increasingly being used for tumor detection, monitoring of treatment response, and detection of relapsed disease (*Prakash et al.*, 2010).

Recent technical advances allow the use of dynamic and diffusion MR imaging in abdominal and pelvic applications (Whittaker et al., 2009).

Functional imaging by means of dynamic multiphase contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion weighted magnetic resonance imaging (DW-MRI) is now part of the standard imaging protocols for evaluation of the female pelvis. DCE-MRI and DW-MRI are important MR imaging techniques which enable the radiologist to move from morphological to functional assessment of diseases of the female pelvis (*Sala et al.*, 2010).

Dynamic contrast enhanced MRI (DCE-MRI) can interrogated the microvascular properties of tissue). DCE-MRI has the ability to noninvasively characterize tissue vasculature (*Naggara et al.*, 2008). It can depict the distribution of contrast by measuring variations in vessel and tissue enhancement over time. Variations in contrast enhancement are associated with specific histopathological features of the tumor (*Moreno et al.*, 2012). Furthermore it provides additional insight into tumor perfusion and capillary permeability.

Dynamic contrast-enhanced images are useful for the evaluation of complex adnexal lesions, as they may help