

STUDIES ON SOLAR GRID-INTERCONNECTED QUASI Z-SOURCE INVERTER

By Ahmed Salah Nabih Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

STUDIES ON SOLAR GRID-INTERCONNECTED QUASI Z-SOURCE INVERTER

By Ahmed Salah Nabih Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Osama A. Mahgoub

Faculty of Engineering Cairo University, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

STUDIES ON SOLAR GRID-INTERCONNECTED SOURCE INVERTER

By Ahmed Salah Nabih Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

ELECTRICAL POWER AND MACHINES ENGINEERING

Prof. Osama Ahmed Mahgoub (Thesis Main Advisor) Faculty of Engineering - Cairo University Prof. Hosam Kamal Mohamed Youssef (Internal Examiner) Faculty of Engineering - Cairo University Prof. Yousry Abdel-Gawad Atia (External Examiner) Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Acknowledgment

First and foremost, thanks to Allah for responding to my prayers and for all the gifts I have been blessed with.

Secondly, I would like to thank Prof. Osama Ahmed Mahgoub for his patience and guidance not only throughout this thesis but also throughout my undergraduate and postgraduate studies. I'm honored to call him my mentor. I'm also grateful to Dr. Abdelmomen Mahgoub for his unlimited and unconditional support and helping me through my writings. I would also like to express my truthful thanks to all members of the Power Electronics Laboratory at Cairo University. I have always enjoyed their discussions in such excellent work environment.

Special thanks goes to my parents; Azza & Salah for their unconditional love, patience and support. Thanks to uncle Usama Nawar for his incessant encouragement and to all my uncles and aunts for being such role models for me.

Dedication

I'd like to dedicate this work to my supportive friends; Mohamad Fawzy, Islam El-sharawy, Taha, El-Batch and Gamal. Without my friends I wouldn't, truly, be where I'm today. I pray for Allah to grant them peace and success through their life.

Table of Contents

Acknowledgment	I
Dedication	II
List of Tables	VI
List of Figures	VII
List of Symbols	X
Abstract	XII
Chapter 1 - Introduction	1
1.1 Renewable Energy Integration	1
1.2 PV Grid Interconnected Converter Topologies	3
1.3 Literature Survey	4
1.4 Thesis Objectives	5
1.5 Outline of the Thesis	5
Chapter 2 - Analysis and Design of QZSI Impedance network	6
2.1 Analysis of QZSI Impedance Network	6
2.1.1 Non-shoot through (NST) state	7
2.1.2 Shoot through (ST) state	9
2.2 Mathematical model for QZSI impedance Network at Steady State	14
2.3 Design of QZSI Impedance Network and Inverter Bridge:	16
2.3.1 Inductors Design:	17
2.3.2 Capacitors Design:	17
2.3.3 Diode Design:	17
2.3.4 Inverter Bridge Design:	17
2.3.5 Case Study	17
2.3.6 Effect of change in rated power on design parameters/values:	19
2.3.7 Effect of change in required output voltage on design parameters/value	es:20
2.3.8 Effect of change in input voltage on design parameters:	21

2.3.9 Practical Considerations	21
2.4 Summary	22
Chapter 3 - Filter design for space-vector modulated grid-tied QZSI	23
3.1 General	23
3.2 Double Fourier Series for a Two-Level Pulse Width-Modulated Waveform	24
3.3 Space-Vector Modulated QZSI	26
3.3.1 The buck mode- traditional SVM	26
3.3.2 The boost mode - Modified-SVM	29
3.4 Harmonic Evaluation	32
3.5 Design considerations of LCL filter	37
3.5.1 Case study of LCL-filter design for QZSI	40
3.6 Simulation and Experimental Results	41
3.7 Summary	46
Chapter 4 - Comparative Study of Harmonic Performance of Different Modulation	
Techniques for ZSI	47
4.1 General	47
4.2 Modulation Techniques for ZSI/QZSI	48
4.2.1 Sinusoidal-PWM (SPWM)	48
4.2.2 Modified-SVM	53
4.3 Evaluation of Harmonic Performance vs. Voltage Gain	58
4.4 Summary	59
Chapter 5 - Control of Space-Vector Modulated PV Grid-Tied Quasi-ZSI	60
5.1 General	60
5.2 Current Controller	61
5.3 DC-link Voltage Controller:	63
5.4 Modulation and Sampling of DC-link Voltage	67
5.5 MPPT Rased On May, Constant Roost Control (MCRC)	68

5.6 Simulation Results	69
5.7 Summary	74
Chapter 6 - Conclusions and Future Work	
6.1 Future Work	76
References	77

List of Tables

Table 2.1 Relations of different control methods for QZSI	15
Table 2.2 Input arguments for designing grid-tied QZSI	18
Table 2.3 Converter Design Values	18
Table 3.1 The resultant phase leg reference within each sextant	29
Table 3.2 The boundaries of the contour $f(x, y) = VDC$ for Modified-SVM	30
Table 3.3 Case study for LCL filter design for grid-tied QZSI	40
Table 3.4 Simulation Data	42
Table 4.1 ST reference signals for sinusoidal-PWM with MCBC	49
Table 5.1 System parameters	70
Table 5.2 Control parameters	70

List of Figures

Figure 1.1 Block diagram of stand-alone PV power converter	1		
igure 1.2 Block Diagrams of grid interconnected PV converters: (a) low power conv			
(b) high power converter			
Figure 1.3 PV power converter topologies: (a) BC-VSI, (b) QZSI	3		
Figure 2.1 QZSI topology for three phase inverter	6		
Figure 2.2 operating modes of QZSI in continuous conduction mode: (a) NST state, (b) S	ST		
state	7		
Figure 2.3 Shoot-through for D=15% , $\textbf{\textit{fs}}$ =10kHZ	10		
Figure 2.4 inductors voltages and currents respectively: (a) inductor <i>L</i> 1, (b) inductor <i>L</i> 2.	The		
inductors charge within the ST time and discharge within NST time	11		
Figure 2.5 Capacitors voltages and currents respectively: (a) capacitor C1 , (b) capacitor C	C 2 .		
	12		
Figure 2.6 Voltage stress and current of the active switches: (a) Diode voltage and current	ıt		
waveforms respectively, the stress on diode is equivalent to the DC link voltage, (b) The	DC		
link voltage, which also represents the voltage stress on the inverter bridge, and the ST			
current component passing via the inverter bridge.	13		
Figure 2.7 Ratio between DC-link voltage and input voltage versus ST duty ratio	15		
Figure 2.8 voltage gain vs. modulation index for SBC, MCBC and MBC	16		
Figure 2.9 Change in design parameters with the increase in converter rated power	19		
Figure 2.11 Change in design parameters with the change in output voltage	20		
Figure 2.10 Change in design parameters with the change in input voltage	20		
Figure 2.12 Parasitic inductances associated with impedance network and the proposed			
snubber circuit	21		
Figure 3.1 Block diagram of grid-tied converter incorporating LPF	23		
Figure 3.2 Two-level inverter; (a) single phase leg, (b) periodic function $f(x, y)$ represe	nting		
the phase leg voltage $van(t)$.	25		
Figure 3.3 QZSI cascaded with LPF	26		
Figure 3.4 Traditional SVM in: (a) $\alpha - \beta$ frame, (b) $a - b - c$ frame	27		
Figure 3.5 Periodic function $f(x, y)$ representing the phase leg voltage in traditional SVN	м. 28		

Figure 3.6 Modified SVM (a) modified reference signals and the resultant phase leg	dified SVM (a) modified reference signals and the resultant phase leg	
voltages, (b) periodic function $f(x, y)$ representing the phase leg voltage	31	
Figure 3.7 Distribution of active-state and zero-state times over a fundamental period, and the	ıe	
locus of <i>Dmax</i> for MBC and MCBC.	32	
Figure 3.8 Theoretical harmonic spectra of phase-neutral voltage in QZSI modulated by (a		
$naturally \ sampled \ traditional \ SVM \ (Buck-mode) \ (b) \ naturally \ sampled \ modified-SVM \ with$		
MCBC (boost-mode). Frequency modulation index $\omega c \omega 0 = 30$	3	
Figure 3.9 Grid interconnected filter (a) L-filter, (b) LCL-filter	34	
Figure 3.10 Harmonic performance indicators versus voltage gain G in buck and boost mode	: :	
(a)WTHD1, (b)WIH1(198), (c)WTHD3, (d)WIH3(198). Frequency modulation index		
$\omega c\omega 0 = 200, \omega r = 40\omega 0.$	37	
Figure 3.11 frequency response of L-filter, LCL-filter and damped LCRL filter	38	
Figure 3.12 Effect of line inductance on DC-link voltage requirements	39	
Figure 3.13 Flow chart of design procedure for damped LCRL filter for a transformer based		
grid-tied QZSI	1	
Figure 3.14 Simulated grid-tied QZSI with L-filter (a) DC link voltage (b) AC output curren	t	
at PCC.	12	
Figure 3.15 Simulated grid-tied QZSI with passive damped LCL-filter (a) DC link voltage (l	5)	
AC output current at PCC.	13	
Figure 3.16 Experimental results of L-L voltage and phase current at M=0.8 for (a) SVM, (b)	
harmonic spectrum of output voltage.	ļ4	
Figure 3.17 Experimental results of L-L voltage and phase current at M=0.8 for (a) Modified	1-	
SVM with MCBC, (b) harmonic spectrum of output voltage for (c) SVM, (d) Modified-SVM	Λ.	
	ŀ5	
Figure 4.1 Sinusoidal-PWM using two ST reference signals	19	
Figure 4.2 Periodic function $f(x, y)$ representing the phase leg voltage for: (a) SPWM with		
SBC, (b) SPWM with MCBC, (c) 3rd harmonic injection with MCBC	51	
Figure 4.3 Harmonic spectra of phase-neutral voltage for (a) SPWM with SBC, (b) SPWM		
with MCBC, (c) 3rd harmonic injection with MCBC at G=1.5, frequency modulation index		
$\omega c \omega 0 = 21$	52	
Figure 4.4 Modified-SVM: (a) ZSVM6, (b) ZSVM4, (c) ZSVM2		
Figure 4.5 Periodic function $f(x, y)$ representing the phase leg voltage for: (a) ZSVM6, (b)		
7SVM4 (c) 7SVM2	56	

Figure 4.6 Harmonic spectrum of phase-neutral voltage for (a) ZSVM6, (b) ZSVM4, (c)
ZSVM2 with MCBC at G=1.5, frequency modulation index $\omega c \omega 0 = 21$ 57
Figure 4.7 WTHD of phase-neutral output voltage vs. voltage gain for (a) different
modulation techniques with SBC and MCBC, (b) ZSVM2 with MCBC and less boost factors
58
Figure 5.1 Schematic of PV power grid-tied QZSI with the proposed three cascaded control
loops61
Figure 5.2 Block diagram of current control in $d - q$ frame
Figure 5.3 Pole-zero map of <i>GidrefvDCs</i> showing variation in pole-zero locations with the
variation in operating ST duty ratio D
Figure 5.4 Bode plot of <i>GidrefvDCs</i> showing variation in the uncompensated open-loop
frequency response with variation in the AC output power
Figure 5.5 Frequency response of the compensated voltage control loop with bandwidth of
40dB. At <i>Id</i> =1pu,0, -1pu, and D=0.266
Figure 5.6 Block diagram of the compensated DC-link voltage control loop66
Figure 5.7 Sampling of DC-link voltage signal in modified-SVM (ZSVM2)67
Figure 5.8 PV cell (a) equivalent circuit, (b) I-V and P-V characteristics of PV cell68
Figure 5.9 flowchart of the P&O process using DC-link voltage set-point as perturbation69
Figure 5.10 Step response of output current: (a) response of <i>id</i> and <i>iq</i> (b) output instanteous
waveforms of grid voltage, inverter voltage and output current71
Figure 5.11 Fig. 10. Step response of DC-link voltage followed by distubance in input
voltage (Vbase=110v) (a) sampled feed-back signal of \boldsymbol{vDC} (b) actual instantaneous
waveform of DC-link voltage72
Figure 5.12. Operation of the MPPT controller showing (a) perturbation in vDC (b)
corresponding ouput power PS at unity p.f73

List of Symbols

 ΔI_L Peak to peak inductor current ripple

 ΔV_C Peak to peak capacitor voltage ripple

B Boost factor of the inverter

BC-VSI Boost converter cascaded with voltage source inverter

Capacitance of the impedance network

D Steady state Shoot Through - ST duty ratio

d Controlled (transient) ST duty ratio

 f_0 Power frequency

 f_c Corner frequency of the Filter

fs Switching frequency of the PWM carrier

G Theoretical voltage gain of the QZSI

*i*_D Instantaneous diode current

 i_{dq} Vector of grid current in dq axes

*I*_g Line RMS current

 I_i Instantaneous inverter bridge current

 I_L Average inductor current

I_{PV} Operating current of PV string

L Inductance of the impedance network

M Modulation index

MBC Maximum Boost Control

MCBC Maximum Constant Boost Control

NST Non-shoot through

 P_s Injected active power to grid

PV Photovoltaic

 Q_s Injected reactive power to grid

QZSI Quasi Z-source inverter

SBC Simple Boost Control

ST Shoot through

SVM Space-vector modulation

 T_0 Shoot through time

 T_1 Non-shoot through time

THD Total Harmonic Distortion

 T_s PWM switching time

 V_c Average capacitor voltage

 V_{CI} Average voltage across the capacitor C_1

 V_{C2} Average voltage across the capacitor C_2

 V_{DC} Peak value of the DC-link voltage

 V_{in} Input voltage

 v_L Instantaneous voltage across the inductor

 v_{max} Peak value of the fundamental component of the phase voltage

 V_n Lower shoot through reference

 V_p Upper shoot through reference

 V_{PV} Operating voltage on PV string terminals

 V_s Phase voltage at PCC

VSI Voltage source inverter

 V_t AC phase voltage at converter terminals

WTHDn Weighted Total Harmonic Distortion of the nth order

ZSI Z-source inverter

ZSVM2 Modified SVM (with two modified reference signals)

ZSVM4 Modified SVM (with four modified reference signals)

ZSVM6 Modified SVM (with six modified reference signals)

Abstract

Renewable energy sources present a trendy solution for energy shortage problem. However, these sources features variable and inconsistent power delivery over the course of the day. Power converters is, therefore, installed to stabilize the power delivery and regulate the output voltage to the utility level. Quasi Z-Source Inverter (QZSI) represents a single-stage buck-boost DC-AC converter, alternative to the traditional DC-DC converter cascaded with voltage-sourced inverter VSI topology, and is suitable for renewable energy integration systems.

In this thesis, a detailed analysis and design of QZSI is presented for grid-interconnected applications. The design procedure of the output low-pass filter is addressed; taking into account the variation in harmonic performance between the traditional PWM techniques for voltage source inverters and the modified PWM techniques for ZSIs. Moreover, an analytical study of harmonic performance of six different modulation techniques for ZSIs is presented. The harmonic spectrum of each modulation technique is estimated using double Fourier series approach. The analytical approach is adopted to exclude the common errors caused by practical conditions from simulation or experimental setups, and to present a fair comparison between the different modulation techniques. A collective evaluation of the modulation techniques using weighted total harmonic distortion is presented; taking into account the impact of the applied voltage gain on the harmonic performance.

This thesis, furthermore, proposes a control system design for QZSI in PV grid-tied applications. The control system is designed based on the dynamic characteristics of the converter and comprises three cascaded controllers. The first is output current controller designed in the synchronous rotating frame. The second is DC-link voltage controller. Sampling and measurement of the DC-link voltage signal is discussed using modified space-vector modulation. The last is maximum power point tracking (MPPT) in which a new strategy is proposed to provide wide operating range of DC-link voltage and shoot-through duty ratio, minimize the voltage stress on the inverter bridge, and prevent overlap between shoot-through duty ratio and modulation index. Simulation results are presented to validate the controllers design.