

Faculty of Medicine Ain Shams University 2017

Oncoplastic breast surgery for the management of duct carcinoma in situ

Essay:

Submitted For Partial Fulfillment Of Master Degree In General Surgery.

By:

Mohamed Tharwat Saad Ibrahim

M.B;B.CH.

Faculty of medicine Ain shams university

Supervised By:

Prof.Dr. Khaled Abd Allah Elfiky

Professor of General Surgery. Faculty of Medicine Ain Shams University.

Dr. Wadie Boshra Gerges

lecturer of General Surgery Faculty of Medicine Ain Shams University

كلية الطب جامعة عين شمس 2017

جراحات الأورام التجميلية في علاج سرطان القنوات اللابدة في الثدي

رسالة تمهيدية

مقدمة من الطبيب/ محمد ثروت سعد ابراهيم بكالوريوس الطب والجراحة جامعة عين شمس

توطئة للحصول على درجة الماجستير في الجراحة العامة تحت إشراف

> أ. د. خالد عبد الله الفقي استاذ الجراحة العامة كلية الطب جامعة عين شمس

> د وديع بشري جرجس

مدرس الجراحة العامة كلية الطب جامعة عين شمس

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Khaled Abd Allah Elfiky,** Professor of General Surgery Faculty of Medicine – Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Dr. Wadie Boshra Gerges,** Lecturer of General Surgery Faculty of

Medicine – Ain Shams University for his sincere

efforts, great help, outstanding support, active

participation and guidance.

Dedication

I dedicate this work to ...

My beloved Mother and father, to whom I owe everything I ever did in my life,

Finally my lovely wife for being the light of my life.

List of content

List of abbreviations	i
List of tables	
List of figures	
Introduction	
Aim of the work	
Breast Development	5
Anatomy of the Female Breast	
Surface anatomy	
Fasciae and Ligaments of the Breast	
Vascular Supply	
Lymphatics of the Breast	
Nerve Supply of the Breast	
Pathology	
CLASSIFICATION	
MICROINVASION	
Risk Factors for DCIS	24
Diagnosis of duct carcinoma in situ	
Management of Duct carcinoma in situ	
The "Round Block" Technique	
Batwing Technique	
Inferior Pedicle	
Reconstruction with Latissimus dorsi	89
Thoracoepigastric Flap	107
The oncoplastic breast surgery	
with pedicled omental flap	
Summary	
References	
Arabic Summary	
THE BUILDING Y	

List of Abbreviations

ADH	Atypical Ductal Hyperplasia
AFIP	The Armed Forces Institute of Pathology
BCS	Breast Conserving Surgery
BRCA1	Breast Cancer–Associated genes
DCIS	Duct carcinoma in Situ
DCISM	Duct Carcinoma In Situ with Microinvasion
DIN	Ductal Intraepithelial Neoplasia
FSH	Follicle Stimulating Hormone
GA	General Anesthesia
HRT	Hormone Replacement Therapy
IDH	Intraductal Hyperplasia
LCIS	Lobular carcinoma In Situ
LD	Latissimus Dorsi Myocutaneous Flap
LH	Luteinizing Hormone
MRI	Magnetic resonance imaging
NAC	Nipple -Areola Complex
NC	Neoadjuvant Chemotherapy
NCCN	National Comprehensive Cancer Network

NAF	Nipple Aspirate Fluid
OPS	Oncoplastic Surgery
SCNB	Stereotactic Core Needle Biopsy
SEER	Surveillance Epidemiology and End Results program
SGAP	Superior Gluteal Artery Perforator
TMG	The Inner Thigh - Transverse Myocutaneous Gracilis flap
TRAM	Transverse Rectus Abdominus Myocutaneous flap
VAB	Vacuum-Assisted Biopsy

List of Tables

Table	Title	Page
Table 1	Studies of risk factors for the development of DCIS	25
Table 2	Type of OPS – BCS for reconstruction of partial mastectomy defects with respect to the location of the tumor in the breast	56

List of Figures

Figure	Title	Page
Figure (1)	Breast anatomy Showing transverse Horizontal septum	10
Figure (2)	Architecture of breast glandular tissue	11
Figure (3)	Arterial distribution of blood to the breast, axilla, and chest wall.	13
Figure (4)	Schematic drawing of the breast identifying the position of lymph nodes relative to the breast and illustrating routes of lymphatic drainage. The clavicle is indicated as a reference point	16
Figure (5)	Lymph nodes of the breast and axilla; classification of Haagensen and colleagues	16
Figure (6)	Levels of axillary lymph nodes identified in relation to the pectoralis minor muscle: I lateral, II behind, III medial	17
Figure (7)	Nerves and axilla	20
Figure (8)	Duct carcinoma in situ algorithm	48

Figure (9)	Diagram of blocked circular dermic suture used in the round block technique	62
Figure (10)	The donut mastopexy	62
Figure (11)	Round block technique for upper pole lesion (11–1 o'clock)	65
Figure (12)	Round block: 3cm invasive lobular cancer in the upper pole	66
Figure (13)	Round block, the lump is lifted up with the pectoralis fascia and elevated outside the skin envelope	66
Figure (14)	Donut mastopexy lumpectomy	67
Figure (15)	The round block mastopexy	70
Figure (16)	Periareolar technique for tumors close to the areola that require breast remodeling	71
Figure (17)	Final result in a 39 years old woman with (the round block technique) for localized DCIS in periareolar zone	41
Figure (18)	Batwing technique	74
Figure (19)	Batwing technique	75
Figure (20)	Batwing technique	76

Figure (21)	Batwing technique	76
Figure (22)	Batwing technique	77
Figure (23)	The batwing mastopexy	77
Figure (24)	Preoperative drawings for inferior pedicle reduction mammoplasty	74
Figure (25)	Inferior pedicle breast reduction – skin marking and extent of excision	80
Figure (26)	Special situations for oncoplastic reconstruction with inferior pedicle mammoplasty.	82
Figure (27)	Surgical procedure, inferior pedicle	83
Figure (28)	Retroareolar tumor treated by central quadrantectomy and inferior pedicle mammoplasty.	88
Figure (29)	Inferior pedicle. Pre- and postoperative view 8 years after surgery and radiation	88
Figure (30)	Reconstruction with Latissimus dorsi	94
Figure (31)	Development of the retromammary space	96
Figure (32)	Mobilizing the overlying skin	97

	envelope in LD mini flap	
Figure (33)	Identification of the neurovascular pedicle	98
Figure (34)	Mobilization and harvest of the miniflap: phase 1	100
Figure (35)	Mobilization and harvest of the miniflap: phase 2	102
Figure (36)	Division of the LD tendon and preparation of the pedicle	102
Figure (37)	Reconstruction of the resection defect	103
Figure (38)	Appearance immediately following closure	104
Figure (39)	Appearance at 10 days	105
Figure (40)	A 39-year-old woman with ductal carcinoma in situ in right upper outer breast.	106
Figure (41)	Perforators to the thoracoepigastric flap should be marked preoperatively with the aid of a Doppler probe	110
Figure (42)	The tumor is removed through an incision in the inframammary fold	111
Figure (43)	After oncologically sound tumor resection, the defect is reevaluated in	112

	terms of defect size and flap	
	dimensions are changed accordingly	
Figure (44)	The flap is incised down to deep fascia. To prevent weakening of the abdominal wall, the deep fascia is not violated. Depending on the patient's individual characteristics, a significant amount of flap volume can be harvested	112
Figure (45)	The flap is raised in a suprafascial plane. A large perforator from the superior epigastric vessels is encountered and isolated. For increased mobility and freedom of flap inset, the fascia is incised around the perforator and traced back in a retrograde fashion	112
Figure (46)	The flap is completely mobilized and de-epithelialized. This, however, is dependent on the needs of the defect. In cases in which a skin defect should be addressed, the flap is only partially de-epithelialized	113
Figure (47)	Immediate postoperative result after the flap has been rotated into the defect and the flap donor site has been	114

	closed directly over a drain	
Figure (48)	36-year-old patient with a tumor in the	115
	lower outer quadrant. Pre- and	
	postoperative view 1 year after	
	surgery and radiation	
Figure (49)	The oncoplastic breast surgery with	116
	pedicled omental flap harvested by	
	laparoscopy	
Figure (50)	Ductal carcinoma in situ in the lower	120
	inner quadrant of the right breast,	
	oncoplastic breast surgery with	
	pedicled omental flap harvested by	
	laparoscopy	

Introduction

Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of lesions in which malignant cells arise and proliferate within the breast ducts without invasion of the basement membrane (*Howlader et al.*, 2008).

According to the Surveillance Epidemiology and End Results program (SEER) from 1975–2008, in situ breast cancers represented approximately 15% of all new breast cancer diagnoses in the United States. DCIS consists of approximately 84% of all in situ disease and accounts for 27% of all newly diagnosed breast cancers (*Kettritz et al.*, 2004).

In the past, most DCIS had presented as a palpable mass. Now, most new cases (more than 90%) are non palpable and discovered mammographically and is found in approximately 20% of all screening mammograms (*Ernster et al., 2002*). DCIS may also present as pathologic nipple discharge with or without a mass or may be identified incidentally in a breast biopsy performed to treat or diagnose another abnormality. If left untreated, invasive breast cancer may develop in 30–50% of DCIS (*Kurniawan et al., 2010*).