

# **Molecular Retinal Changes Accompanying Hormonal Chemotherapy Treatment**

A Thesis submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

#### By

## Heba Sabry Mohamadin Quenawy

B.Sc. (Biophysics), 2008 Ain Shams University

#### Supervised by

#### Prof. Dr. El-Sayed Mahmoud El-Sayed

Prof. of Biophysics, Head of Biophysics group, Faculty of Science Ain Shams University

#### Prof. Dr/ Mona Salah El-Din Hassan Talaat

Prof. of Biophysics, Faculty of Science Ain Shams University.

#### Dr. Eman Mohamed Aly Saleh

Assistant Prof., Biophysics and Laser Science unit Research institute of ophthalmology

(2016)

#### APPROVAL SHEET

Name: Heba Sabry Mohamadin Quenawy

Title: Molecular Retinal Changes Accompanying

Hormonal Chemotherapy Treatment.

## **Supervisors:**

### Prof. Dr. El-Sayed Mahmoud El-Sayed

Prof. of Biophysics, Faculty of Science Ain Shams University

#### Prof. Dr/ Mona Salah El-Din Hassan Talaat

Prof. of Biophysics, Faculty of Science Ain Shams University.

### Dr. Eman Mohamed Aly Saleh

Assistant Prof., Biophysics and Laser Science unit Research institute of ophthalmology



Name: Heba Sabry Mohamadin Quenawy

**Degree:** Master Degree in Biophysics

**Department:** Physics- Biophysics Group

Faculty: Science

**University:** Ain Shams

**Graduation Date:** 2008, Ain Shams University

Registration

**Grant Date** 

# **ACKNOWLEDGMENT**

First of all I want to thank **GOD** for helping me to finish this study this way.

I would like to give great thanks to my **Mother** and all my **family** for their support and encouragement.

Special thanks are given to **Prof. Dr. El-Sayed Mahmoud El-Sayed,** Prof. of Biophysics, Head of Biophysics group, Faculty of Science, Ain Shams University and **Prof. Dr/ Mona Salah El-Din Hassan Talaat** Prof. of Biophysics, Faculty of Science, Ain Shams University, for their helpful supervision and instructions.

Dear professors, it gives me great pleasure to introduce my humble effort to you wishing that it would be appreciated by your Excellency.

No words can express my feelings towards **Dr. Eman Mohamed Aly Saleh** Assistant Prof., Biophysics and Laser Science unit,

Research institute of ophthalmology, for her great efforts with me. Actually she was so helpful and patient with me and she is worth of lots of thanks and gratitude.

Many thanks are for Physics Department, Faculty of Science, Ain Shams University. Specially **Dr. Salah Yassin Bakry**, Head of the department for his help.

Also I would like to thank all my **friends** and **coworkers** and everyone prayed for me or wished me good luck. Really, your words were so meaningful to me and gave me a push. Thank you all.

Finally, to the Soul of my **Father** and my **Uncle**, rest in peace, I'm on my way to achieve your dream.

# **Contents**

| _ <del></del>                                    | Page |
|--------------------------------------------------|------|
| I' (CE'                                          | т    |
| List of Figures                                  | I    |
| List of Tables                                   | X    |
| List of Abbreviations                            | XII  |
| Abstract                                         | XIV  |
| Chapter One                                      |      |
| <b>Introduction and Literature Review</b>        |      |
| Introduction                                     | 1    |
| Literature Review                                | 2    |
| 1.1Side effects of tamoxifen                     | 2    |
| 1.1.1-Ocular side effects                        | 3    |
| 1.1.2. Other effects of Tamoxifen                | 9    |
| 1.1.2.1. Central nervous system                  | 9    |
| 1.1.2.2. Bone                                    | 9    |
| 1.1.2.3. Endometrial cancer                      | 10   |
| 1.1.2.4. Cardiovascular and metabolic activities | 10   |
| Chapter Two                                      |      |
| <b>Theoretical Aspects</b>                       |      |
|                                                  |      |
| 2.1. The visual system                           | 11   |
| 2.2. Structure of the Eye                        | 11   |
| 2.2.1. The retina                                | 12   |

| 2.2.1.1.1. Photoreceptors                            | 16 |
|------------------------------------------------------|----|
| 2.2.1.2 Presence of estrogen receptors in retina     | 18 |
| 2.3. Protein structure                               | 18 |
| 2.3.1. Secondary structure                           | 18 |
| 2.3.1. a The peptide group                           | 19 |
| 2.3.1. b. Regular secondary structure                | 20 |
| I- α Helix                                           | 20 |
| II-β- Sheets                                         | 21 |
| 2.3.2 Tertiary structure                             | 22 |
| 2.3.3. Quaternary structure                          | 23 |
| 2.4. Fourier Transform Infra-Red Spectroscopy (FTIR) | 24 |
| 2.4.1. Michelson's interferometer                    | 25 |
| 2.5. Comet Assay                                     | 26 |
| 2.6. Phases of the cell cycle                        | 26 |
| 2.7. Cancer                                          | 28 |
| 2.7.1 Breast cancer                                  | 30 |
| 2.7.2 Cancer treatments                              | 31 |
| 2.7.2.1 Treatment strategies                         | 31 |
| 2.7.2.2. Chemotherapy                                | 32 |
| 2.7.2.2.1 Types of chemotherapy drugs                | 33 |
| 2.7.2.2.1.1. Hormone therapy for breast cancer       | 35 |
| 2.7.2.2.2 Drugs that block estrogen                  | 36 |
|                                                      |    |
| Chapter Three                                        |    |
| <b>Materials and Methods</b>                         |    |
| 3.1 Subjects                                         | 40 |
|                                                      |    |

2.2.1.1. Histologic organization of the retina.....

13

| 3.2 Chemicals supply                                 | 41 |
|------------------------------------------------------|----|
| 3.3 Administration of tamoxifen                      | 41 |
| 3.4 Preparation of samples                           | 41 |
| 3.5 FTIR Spectroscopy measurements                   | 41 |
| 3.6. Comet assay                                     | 43 |
| 3.6.1 Preparation of reagents                        | 43 |
| 3.6.2 Preparation of slides for the SCGE/Comet Assay | 44 |
| 3.6.3 Electrophoresis of slides                      | 44 |
| 3.6.4 Evaluation of DNA damage                       | 45 |
| 3.7 Oxidants and antioxidants measurements           | 46 |
| 3.7.1 Malonyldialdehyde                              | 46 |
| 3.7.2 Superoxide dismutase measurement               | 47 |
| 3.7.3 Glutathione Peroxidase measurements            | 49 |
| 3.7.4 Catalase activity measurements                 | 50 |
| 3.8. Statistical evaluation                          | 52 |
|                                                      |    |
| Chapter Four                                         |    |
| <u>Results</u>                                       |    |
| 4.1. FTIR spectroscopy of rabbit retina              | 53 |
| NH-OH region                                         | 54 |
|                                                      |    |
| • C-H region                                         | 63 |
| Fingerprint region                                   | 71 |

| Amide I band                                  | 78  |
|-----------------------------------------------|-----|
| 4.2. Comet assay                              | 85  |
| 4.3. Oxidants and antioxidants measurements   | 93  |
| Chapter Five <u>Discussion and Conclusion</u> |     |
| Discussion                                    | 98  |
| Conclusion                                    | 107 |
| References                                    | 109 |
| Arabic abstract                               |     |

# **List of Figures**

| Fig.   | <u>Title</u>                                                          | <u>page</u> |
|--------|-----------------------------------------------------------------------|-------------|
| (2-1)  | Vertical section of the adult human eye                               | 12          |
| (2-2)  | Light micrograph of vertical section through central human retina     | 13          |
| (2-3)  | sections of retina                                                    | 16          |
| (2-4)  | Structural differences between rods and cones                         | 17          |
| (2-5)  | Primary structure (amino acid sequence in a polypeptide chain)        | 18          |
| (2-6)  | Torsion angles of the polypeptide backbone.                           | 20          |
| (2-7)  | The α helix                                                           | 21          |
| (2-8)  | The β sheet                                                           | 22          |
| (2-9)  | tertiary structure                                                    | 23          |
| (2-10) | quaternary structure of two proteins  (a) collagen & (b) hemoglobin   | 24          |
| (2-11) | Schematic diagram of the optical layout of a Michelson interferometer | 25          |
| (2-12) | Phases of cell cycle.                                                 | 26          |
| (2-13) | 2D & 3D structural and molecular formulae of tamoxifen.               | 35          |
| (2-14) | Tamoxifen metabolism pathway.                                         | 38          |
| (3-1)  | FTIR spectrophotometer.                                               | 41          |
| (3-2)  | MDA standard curve                                                    | 46          |
| (3-3)  | XOD and SOD antagonism in the generation of formazan dye.             | 47          |

|       | SOD activity (% inhibition rate): human serum (10 µl) and                                |    |
|-------|------------------------------------------------------------------------------------------|----|
|       | isolated mitochondria from Jurkat cells (10 µg), and yeast                               |    |
| (3-4) | (Saccromyces cerevisiae, 100 ug), was used to determine                                  | 48 |
|       | SOD Activity.                                                                            |    |
|       | ·                                                                                        |    |
| (3-5) | H <sub>2</sub> O <sub>2</sub> Standard curve.                                            | 50 |
|       | Overlaid FTIR spectra for normal group and treated with                                  |    |
| (4.1) | 5mg/kg (panel a), 10 mg/kg (panel b) and 15 mg/kg (panel                                 | 53 |
|       | c) of tamoxifen for 2, 4 and 6 months.                                                   |    |
|       |                                                                                          |    |
|       | NH-OH region of the retinal FTIR spectra that has the                                    |    |
| (4.2) | range 4000-3000 cm <sup>-1</sup> for normal rabbits. (1) <sub>Str</sub> OH, (2)          | 54 |
|       | strOH <sub>asym</sub> , (3) strOH <sub>sym</sub> .                                       |    |
|       |                                                                                          |    |
|       | NH-OH region of the retinal FTIR spectra for animals                                     |    |
| (4.3) | group administrated 5 mg/kg of tamoxifen for 2 months. (1)                               | 55 |
|       | $_{Str}OH$ , (2) $_{str}OH_{asym}$ , (3) $_{str}OH_{sym}$ and (4) $CH_{ring}$ .          |    |
|       |                                                                                          |    |
|       | NH-OH region of the retinal FTIR spectra for animals                                     |    |
| (4.4) | group administrated 5 mg/kg of tamoxifen for 4 months. (1)                               | 55 |
|       | StrOH, (2) strOH <sub>asym</sub> , (3) strOH <sub>sym</sub> and (4) CH <sub>ring</sub> . |    |
|       | NH-OH region of the retinal FTIR spectra for animals                                     |    |
| (4.5) | group administrated 5 mg/kg of tamoxifen for 6 months. (1)                               | 56 |
|       | StrOH, (2) strOH <sub>asym</sub> , (3) strOH <sub>sym</sub> and (4) CH <sub>ring</sub> . |    |
|       | NH-OH region of the retinal FTIR spectra for animals                                     |    |
| (4.6) | group administrated 10 mg/kg of tamoxifen for 2 months.                                  | 57 |
|       | (1) $_{Str}OH$ , (2) $_{str}OH_{asym}$ , (3) $_{str}OH_{sym}$ .                          |    |

| (4.7)  | NH-OH region of the retinal FTIR spectra for animals                        |            |
|--------|-----------------------------------------------------------------------------|------------|
|        | group administrated 10 mg/kg of tamoxifen for 4 months                      | 57         |
|        | showing the deconvoluted FTIR spectrum. (1) StrOH, (2)                      | 37         |
|        | $_{\rm str}OH_{\rm asym}$ and (3) $_{\rm str}OH_{\rm sym}$ .                |            |
|        | NH-OH region of the retinal FTIR spectra for animals                        |            |
| (4.9)  | group administrated 10 mg/kg of tamoxifen for 6months                       | <b>5</b> 0 |
| (4.8)  | showing the deconvoluted FTIR spectrum. (1) StrOH, (2)                      | 58         |
|        | strOH <sub>asym</sub> and (3) strOH <sub>sym</sub> .                        |            |
|        | NH-OH region of the retinal FTIR spectra for animals                        |            |
| (4.0)  | group administrated 15 mg/kg of tamoxifen for 2 months                      | 50         |
| (4.9)  | showing the deconvoluted FTIR spectrum. (1) StrOH, (2)                      | 59         |
|        | strOH <sub>asym</sub> and (3) strOH <sub>sym</sub> .                        |            |
|        | NH-OH region of the retinal FTIR spectra for animals                        |            |
| (4.10) | group administrated 15 mg/kg of tamoxifen for 4 months                      | 50         |
| (4.10) | showing the deconvoluted FTIR spectrum. (1) StrOH, (2)                      | 59         |
|        | strOH <sub>asym</sub> and (3) strOH <sub>sym</sub> .                        |            |
|        | NH-OH region of the retinal FTIR spectra for animals                        |            |
| (4.11) | group administrated 15 mg/kg of tamoxifen for 6 months                      | 60         |
| (4.11) | showing the deconvoluted FTIR spectrum. (1) StrOH, (2)                      | 60         |
|        | $_{\rm str}OH_{\rm asym}$ and (3) $_{\rm str}OH_{\rm sym}$ .                |            |
|        | CH region of the retinal FTIR spectra for normal animals                    |            |
| (4.12) | group showing the deconvoluted FTIR spectrum. (1)                           | 63         |
|        | $_{asym}CH_3$ , (2) $_{asym}CH_2$ , (3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ . |            |
|        |                                                                             | 63         |
| (4.13) | CH region of the retinal FTIR spectra for animals groups                    |            |
|        | administrated 5mg/kg of tamoxifen for 2 months. (1)                         |            |
|        | $_{asym}CH_3$ , (2) $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .  |            |
|        |                                                                             |            |
|        |                                                                             |            |

| (4.14) | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        | administrated 5mg/kg of tamoxifen for 4 months. (1)                                                                                                | 64 |
|        | <sub>asym</sub> CH <sub>3</sub> , (2) <sub>asym</sub> CH <sub>2</sub> ,(3) <sub>sym</sub> CH <sub>3</sub> and (4) <sub>sym</sub> CH <sub>2</sub> . |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.15) | administrated 5mg/kg of tamoxifen for 6 months. (1)                                                                                                | 65 |
|        | $_{asym}CH_3$ , (2) $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                         |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.16) | administrated 10mg/kg of tamoxifen for 2 months. (1)                                                                                               | 65 |
|        | $_{asym}CH_3$ , (2) $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                         |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.17) | administrated 10mg/kg of tamoxifen for 4 months. (1)                                                                                               | 66 |
|        | $_{asym}CH_3$ , (2) $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                         |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.18) | administrated 10mg/kg of tamoxifen for 6 months showing                                                                                            | 66 |
| (4.10) | the deconvoluted FTIR spectrum. (1) <sub>asym</sub> CH <sub>3</sub> , (2)                                                                          | 66 |
|        | $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                                             |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.19) | administrated 15mg/kg of tamoxifen for 2 months showing                                                                                            | 67 |
| (4.17) | the deconvoluted FTIR spectrum. (1) <sub>asym</sub> CH <sub>3</sub> , (2)                                                                          | 07 |
|        | $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                                             |    |
|        | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
| (4.20) | administrated 15mg/kg of tamoxifen for 4 months showing                                                                                            | 67 |
| (4.20) | the deconvoluted FTIR spectrum. (1) $_{asym}CH_3$ , (2)                                                                                            | 0/ |
|        | $_{asym}CH_{2}$ ,(3) $_{sym}CH_{3}$ and (4) $_{sym}CH_{2}$ .                                                                                       |    |
| (4.21) | CH region of the retinal FTIR spectra for animals groups                                                                                           |    |
|        | administrated 15mg/kg of tamoxifen for 6 months showing                                                                                            | 68 |
|        | the deconvoluted FTIR spectrum.(1) <sub>asym</sub> CH <sub>3</sub> , (2)                                                                           | 30 |
|        | $_{asym}CH_2$ ,(3) $_{sym}CH_3$ and (4) $_{sym}CH_2$ .                                                                                             |    |

| (4.22) | FTIR spectra of the fingerprint region for normal group.                                                                              |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | The numbers above the peaks are to facilitate their                                                                                   |     |
|        | assignment. (1) $_{bend}CH_2$ , (2) $_{str}COO_{sym}$ , (3) $_{def}CH_3$ , (4)                                                        | 71  |
|        | $_{\text{str}}PO_{2}^{-}_{\text{asym}}$ , (5) $_{\text{str}}COOC_{\text{asym}}$ , (6) $_{\text{str}}PO_{2}^{-}_{\text{sym}}$ and (7)  |     |
|        | strCOC.                                                                                                                               |     |
|        | FTIR spectra of the fingerprint region for group                                                                                      |     |
| (4.22) | administrated to 5 mg/kg of tamoxifen for 2months.                                                                                    | 71  |
| (4.23) | (1) $_{bend}$ CH <sub>2</sub> , (2) $_{str}$ COO $_{sym}$ , (3) $_{def}$ CH <sub>3</sub> , (4) $_{str}$ PO $_{2}^{-}$ $_{asym}$ , (5) | 71  |
|        | $_{str}COOC_{asym}$ , (6) $_{str}PO_{2}^{-}_{sym}$ and (7) $_{str}COC$ .                                                              |     |
|        | FTIR spectra of the fingerprint region for group                                                                                      |     |
| (4.24) | administrated to 5 mg/kg of tamoxifen for 4months.                                                                                    | 72  |
| (4.24) | (1) $_{bend}CH_2$ , (2) $_{str}COO_{sym}$ , (3) $_{def}CH_3$ , (4) $_{str}PO_2^ _{asym}$ , (5)                                        | 12  |
|        | $_{str}COOC_{asym}$ , (6) $_{str}PO_2^ _{sym}$ and (7) $_{str}COC$ .                                                                  |     |
|        | FTIR spectra of the fingerprint region for group                                                                                      |     |
|        | administrated to 5 mg/kg of tamoxifen for 6 months.                                                                                   |     |
| (4.25) | (1) $_{bend}CH_2$ , (2) $_{str}COO_{sym}$ , (3) $_{def}CH_3$ , (4) $_{str}PO_2^ _{asym}$ , (5)                                        | 72  |
|        | $_{str}COOC_{asym}$ , (6) $_{str}PO_2^ _{sym}$ and (7) $_{str}COC$ .                                                                  |     |
|        |                                                                                                                                       |     |
|        | FTIR spectra of the fingerprint region for group                                                                                      |     |
|        | administrated to 10 mg/kg of tamoxifen for 2months.                                                                                   |     |
| (4.26) | (1) $_{bend}CH_2$ , (2) $_{str}COO_{sym}$ , (3) $_{def}CH_3$ , (4) $_{str}PO_2^ _{asym}$ , (5)                                        | 73  |
|        | $strCOOC_{asym}$ , and (6) $strPO_2^- sym$ .                                                                                          | 73  |
|        |                                                                                                                                       |     |
|        |                                                                                                                                       |     |
| (4.27) | FTIR spectra of the fingerprint region for group                                                                                      |     |
|        | administrated to 10 mg/kg of tamoxifen for 4months. (1)                                                                               | 73  |
|        | $_{bend}CH_2$ , (2) $_{str}COO_{sym}$ , (3) $_{def}CH_3$ , (4) $_{str}PO_2^ _{asym}$ , (5)                                            | , 5 |
|        | $strCOOC_{asym}$ , and (6) $strPO_2^- sym$ .                                                                                          |     |

| (4.28) | FTIR spectra of the fingerprint region for group administrated to 10 mg/kg of tamoxifen for 6 months. (1) bendCH <sub>2</sub> , (2) strCOO <sub>sym</sub> , (3) defCH <sub>3</sub> , (4) strPO <sub>2</sub> <sup>-</sup> asym, (5) strCOOC <sub>asym</sub> , and (6) strPO <sub>2</sub> <sup>-</sup> sym.                                                                 | 74 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (4.29) | FTIR spectra of the fingerprint region for group administrated to 15 mg/kg of tamoxifen for 2months. The numbers above the peaks are to facilitate their assignment.  (1) bendCH <sub>2</sub> , (2) strCOO <sub>sym</sub> , (3) defCH <sub>3</sub> , (4) strPO <sub>2</sub> <sup>-</sup> asym, (5) strCOOC <sub>asym</sub> , and (6) strPO <sub>2</sub> <sup>-</sup> sym. | 74 |
| (4.30) | FTIR spectra of the fingerprint region for group administrated to 15 mg/kg of tamoxifen for 4months. (1) bendCH <sub>2</sub> , (2) strCOO <sub>sym</sub> , (3) defCH <sub>3</sub> , (4) strPO <sub>2</sub> <sup>-</sup> asym, (5) strCOOC <sub>asym</sub> , and (6) strPO <sub>2</sub> <sup>-</sup> sym.                                                                  | 75 |
| (4.31) | FTIR spectra of the fingerprint region for group administrated to 15 mg/kg of tamoxifen for 6 months. (1) bendCH <sub>2</sub> , (2) strCOO <sub>sym</sub> , (3) defCH <sub>3</sub> , (4) strPO <sub>2</sub> <sup>-</sup> asym, (5) strCOOC <sub>asym</sub> , (6) strPO <sub>2</sub> <sup>-</sup> sym and (7) strCOC.                                                      | 75 |
| (4.32) | Amid I region (1700:1600 cm <sup>-1</sup> ) of the retinal deconvoluted FTIR spectrum for normal animals.                                                                                                                                                                                                                                                                 | 78 |