Local causes of painful shoulder joint: Assessment by high resolution ultrasonography and MRI

Thesis

Submitted for partial fulfillment of M.D. Degree in Radiodiagnosis

Presented By

Shaymaa Hassan Mohamed Salah

M.B.B.Ch., M.Sc. of radiodiagnosis

Faculty of Medicine, Ain Shams University

Supervised By

Prof. Dr. Abeer Maghawry Abd Elhameed

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Prof. Dr. Mohamed Amin Nassef

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Prof. Dr. Mohamed Elgharib Abo Elmaaty

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Ass. Prof. Dr. Yasser Ibrahim Abd Elkhalek

Assistant professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Acknowledgment

First and foremost, thank to Allah, to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Tr. Abeer Maghawry Abd Elhameed, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her sincere encouragement, kind co-operation, constant advice and valuable guidance throughout the performance of this work.

I would like to express my great thanks to ∇r . Mohamed Amin Hassef, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind guidance and generous supervision.

Special thanks to **Tr. Mohamed Elghareeb Abo Elmasty**, **Professor** of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind supervision.

Special thanks to **Tr. Passer Thrahim Abd Elkhalek**, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his supervision and advice which gave me the best guide during this work.

I wish to express my deepest thanks and gratitude to Tr. Cossam Moussa Sakr, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain shams University for his help at collecting the cases and doing ultrasound examination for the patients.

I would like to thank my family, my friends and my colleagues for their support and moral encouragement.

Contents

•	Introduction and aim of the work1
•	Anatomical review of shoulder joint5
•	Pathological and clinical review of local causes of
	painful shoulder joint28
•	Technical aspects of high resolution ultrasound and
	MRI of shoulder joint60
•	High resolution ultrasound and MRI assessment of
	painful shoulder joint76
•	Patients and methods111
•	Results
•	Illustrative cases
•	Discussion
•	Summary and conclusion
•	References
•	Arabic summary

List of abbreviations

AC Acromioclavicular

ACJ Acromioclavicular joint

ALPSA Anterior labral periosteal sleeve avulsion

AVN Avascular necrosis

C Cervical nerve

CDI Color Doppler imaging

DM Diabetes mellitus

FOV Field of view

FS Frozen shoulder

GH Glenohumeral joint

GLAD Glenolabral articular disruption

IST Infraspinatous tendon

LHB Long head of biceps

LHBT Long head of biceps tenosynovitis

MRI Magnetic resonance imaging

	Introduction and Aim of the work	
MRS	Magnetic resonance spectroscopy	
PD	Power Doppler	
PMR	Polymyalgia rheumatic	
RC	Rotator cuff muscles	
SLAP	Superior labral lesion	

SI Signal intensity

SS Supraspinatous tendon

T Thoracic nerve

US Ultrasound

Figures

Figure	Title	Page
number		
1.	Coronal section of right shoulder joint	9
2.	Shoulder joint and related	11
	bursae	
	(a) anterior view	
	(b) posterior view	
3.	Ligaments of the	13
	glenohumeral and	
1	acromioclavicular joints	16
4.	Antolatreal view of glenoid cavity, highlight factors	10
	helping in its stability	
~	· · · · · · · · · · · · · · · · · · ·	21
5.	Acromion morphology	31
6.	ossification centers of the acromion	32
7.	(a) normal AC joint (b) degenerated AC joint	33
8.	Coronal graphic shows a	36
0.	full thickness tear through	30
	the mid substance of the	
	supraspinatus tendon	
9.	Coronal graphic shows a	36
	partial tear of the articular	
	surface of the	
	supraspinatus tendon	
10.	Coronal graphic shows a	37
	partial tear of the bursal	
	surface of the	
	supraspinatus tendon	

11.	Coronal graphic shows a partial intrasubstance tear	37
	of the supraspinatus tendon	
12.	Possible pathology and	42
	pathogenesis of frozen	
	shoulder	
13.	Osteoarthritis of the	44
	humeral head	
14.	Factors involved in the	45
	development of	
	posttraumatic arthritis after	
	injury	
15.	Histological picture of	46
	corticocancellous	
	osteonecrosis	
16.	The pathological changes	48
	associated with a massive	
	rotator cuff tear	
17.	Classification of AC joint	51
	injuries	
18.	Long head biceps tendon	62
	in axial and longitudinal	
19.	Subscapularis tendon (long	63
	axis)	
20.	Supraspinatus tendon (long	64
	axis)	
21.	Supraspinatus tendon	65
	(short axis)	
22.	Infraspinatous tendon	66
	(long-axis)	
23.	Long axis scan of	67
	infraspinatus	
24.	US image of	68
	acromioclavicular joint	

25.	T2 WI axial planner image	70
	showing planning of	
	(a) oblique coronal	
	(b) oblique sagittal images	
26.	Normal shoulder. Coronal-	71
	oblique T1WI	
27.	Normal shoulder	72
	(a) Sagittal-oblique T2WI	
	with fat-saturation	
	(b) sagittal-oblique T1WI	
28.	Coronal fat-suppressed T2-	77
	weighted MR image shows	
	distention of subacromial	
	subdeltoid bursa without	
	rotator cuff tear	
29.	Types of acromian (MRI)	78
30.	Coronal sonography view	79
	of left shoulder with	
	subacromial impingement	
31.	Coronal	80
	sonography view of left	
	shoulder with shoulder	
	impingement syndrome,	
	during active elevation of	
	arm	
32.	subacromial-subdeltoid	80
	bursal thickening (US)	-
33.	Axial T1-weighted image	81
	showing the os acromiale	
34.	Os acromiale (US)	82
35.	Full-thickness	83
<i>JJ</i> .	supraspinatus tear	0.5
	(a) MRI	
	(b) US	
	(0) 03	

26	D (1.11.1	0.4
36.	Partial-thickness	84
	subscapularis tear.	
	(a) MRI	
	(b) US	
37.	Coronal oblique	85
	fat-sat PD WI:	
	calcifications within the	
	distal supraspinatus tendon	
	fibres	
38.	US of supraspinatous	86
	calcific tendinitis	
39.	MRI of a case of adhesive	88
	capsulitis	
40.	Adhesive capsulitis US	89
	assessment	
41.	MRI of shoulder	91
	osteoarthritis	
42.	Osteonecrosis MRI	92
43.	MRI in shoulder of	93
	rheumatoid arthritis	
	patients	
44.	Ultrasound image of the	93
	left shoulder in transverse	
	scan showed humeral head	
	erosion	
45.	tophaceous erosion of the	95
	greater tuberosity (MRI)	
46.	Ultrasound of the right	95
	shoulder demonstrating	
	double contour sign	
47.	acromioclavicular joint	97
	osteoarthritis (MRI)	
48.	acromioclavicular joint	97
	osteoarthritis (US)	
	` ′	

40	Command DD WI	00
49.	Coronal PD WI : complete disruption of	99
	acromioclavicular	
50.	ligaments Acromioclavicular joint	100
30.	dislocation (US)	100
51.		101
31.	MRI changes in distal clavicular osteolysis	101
52.	Posttraumatic osteolysis of	102
<i>J2.</i>	the clavicle(US)	102
53.	LHBT (MRI)	103
	, ,	
54.	LHBT (US)	103
55.	Partial rupture in the	105
	LHBT (MRI)	16 =
56.	Chronic rupture LHBT	105
	(US)	10-
57.	Septic arthritis of the right	107
	shoulder (MRI)	105
58.	Synovitis of the	107
	glenohumoral joint with	
70	power Doppler signal	100
59.	MRI shoulder of Bankart	108
60	lesion	100
60.	Hill-Sachs lesion (US)	109
61.	Intramuscular lipoma (US)	110
62.	Summary of agreement	123
	between US and MRI in	
	different clinico-	
	patholigical findings in	
	shoulder examination	
63.	Case (1) Right shoulder	126
	US	
64.	Case (1) Right shoulder	127
	MRI	
65.	Case (2) Right shoulder	130
	plain radiography	

66.	Case (2) Right shoulder ultrasound	131
67.	Case (2), (a) and(b) Right shoulder US, (c) and (d) Case (2) Right shoulder MRI	132
68.	Case (2) Right shoulder MRI	133
69.	Case (3) (a) Right shoulder US, (b) right shoulder MRI	135
70.	Case (4) (a) Right shoulder US, (b) and (c) right shoulder MRI	137
71.	Case (5) left shoulder US	139
72.	Case (5) left shoulder MRI	140
73.	Case (6) Right shoulder ultrasound	142
74.	Case (6) Right shoulder ultrasound	143
75.	Case (6) Right shoulder MRI	144
76.	Case (7) Left shoulder ultrasound	146
77.	Case (7) Left shoulder MRI	147
78.	Case (8) Right shoulder (a) and (b)ultrasound, (c) and (d) MRI	149
79.	Case (9) Right shoulder (a) and (b)ultrasound, (c) and (d) MRI	151
80.	Other reasons to perform shoulder ultrasound instead of MRI	161

Tables

Table	Title	Page
number	Title	1 agc
1.	Muscles acting on	25
	shoulder joint	
2.	Ligamentous lesions	98
	according to Rockwood	
	classification adapted for	
	MRI	
3.	Coefficients of agreement	116
4	interpretation	117
4.	Distribution of different	117
	age groups among	
	selected patients	110
5.	Distribution of associated	118
	co-morbidity and systemic	
	medication intake	
6.	The spectrum of	119
··	abnormalities detected by	117
	ultrasonographic	
	examination	
7.	MRI additional findings	120
	missed by ultrasound	
8.	Agreement between US	120
	and MRI as regards	
	detection of glenohumeral	
	pathology	
9.	Agreement between US	121
	and MRI as regards	
	detection of	
	acromioclavicular joint	
	pathology	

10.	Agreement between US and MRI as regards detection of non-rotator	121
	cuff muscle pathology	
11.	Agreement between US and MRI as regards detection of rotator cuff muscle pathology	121
12.	Agreement between US and MRI as regards bursitis	122
13.	Agreement between US and MRI as regards sequels of glenohumeral joint instability	122
14.	Agreement between US and MRI as regards bony lesions	123
15.	Ultrasound accuracy and validity as regard different shoulder clinicopathological disorders	124
16.	Applications of MRI and ultrasound for the shoulder.	162

Introduction

The shoulder joint is a unique joint with the greatest range of motion, which is facilitated by a shallow synovial joint strengthened by rotator cuff muscles and tendons, together with glenohumeral ligaments and labrum. This complex anatomy makes it more vulnerable to certain sports related injuries in addition to degenerative and inflammatory joint disease (*Gafoor et al, 2013*).

Hence, shoulder pain is a common and often disabling complaint. It is the third most common musculoskeletal reason for attending general practitioner after back and neck problems. In the community, the estimated prevalence of shoulder pain is between 16 and 26% (*Brittet et al*, 2009).

Ultrasound examination and magnetic resonance imaging have been reported as useful diagnostic tools in secondary care and may increase the specificity of diagnosis (Ostor et al, 2004).

Since its introduction in the 1980s. MRI revolutionized sectional cross imaging of the musculoskeletal system and has become the most widely used technique for a wide variety of pathologic conditions. another musculoskeletal imaging technique was However. rise—namely, sonography. the quietly on Rapid in technology have made improvements sonography complementary tool for musculoskeletal important imaging, and there is now a large body of literature documenting effectiveness the of musculoskeletal sonography (Nazarian, 2008).