

Ain Shams University Faculty of Engineering Electronics and Communications Department

Custom Layout in Deep Sub-Micron Processes

A thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Khaled Mohamed Refaat Ahmed AbdelRehim Elkenawy
B.Sc. of Electrical Engineering
Electronics and Communications Department
Ain Shams University, 2011

Supervised by

Prof. Mohamed Amin Dessouky Dr. Hazem Said Ahmed Cairo, 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Custom Layout in Deep Sub-Micron Processes

by

Khaled Mohamed Refaat Ahmed AbdelRehim Elkenawy

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

EXAMINERS' COMMITTEE

Name and Affiliation	Signature	
Prof. Elsayed Mostafa Saad		
Electronics and Communications Engineering Dept.		
Faculty of Engineering, Helwan University.		
Prof. Hany Fikry Ragai		
Electronics and Communications Engineering Dept.		
Faculty of Engineering, Ain Shams University.		
Prof. Mohamed Amin Dessouky		
Electronics and Communications Engineering Dept.		
Faculty of Engineering, Ain Shams University.		

Date: / / 2016

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Khaled Mohamed Refaat Ahmed AbdelRehim Elkenawy

Date: / / 2016

Curriculum Vitae

Name: Khaled Mohamed Refaat Ahmed AbdelRehim Elkenawy

Date of Birth: 9th of April 1989

Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: 2011

Custom Layout in Deep Sub-Micron Processes

Khaled Mohamed Refaat Ahmed AbdelRehim Elkenawy

Masters of Science Dissertation Electronics and Communications Department Faculty of Engineering - Ain Shams University

ABSTRACT

In recent years, the Systems-On-Chip advanced in technology and complexity to support the contentiously added modules and functionalities required to be implemented on a single chip. Although, most of the functions are implemented with digital circuitry, the interface with the real world makes an analog part a necessity. In terms of chip area, the analog part of the circuitry is usually not the major contributor, but still the one requiring most of the effort and time for closure. The progress in digital design CAD tools enabled digital design engineers to accommodate the increased size and functionality of digital circuitry, while on the other hand the design automation capabilities of analog CAD tools did not increase equally. Different analog design automation approaches have been attempted; however, no generic automation methodology can be followed as the problem is less systematic and encompasses many trade-offs.

From process technology perspective, as the technology scales down towards the sub-micron processes new Layout Dependent Effects (LDE) are introduced. These effects are layout dependent, hence can't be accurately taken into consideration until the layout phase of the design is started. To achieve post-layout successful designs that meet all the specifications, typically many iterative loops between the schematic and physical design are required.

This thesis provides an overview on the analog layout placement challenges in deep sub-micron processes. A custom layout automated placement flow is introduced using Satisfiability Modulo Theories (SMT). The goal is to find the feasible placements for the building blocks construing the design top-level which meet the assigned area and aspect ratio. Also, a stress-aware device pattern generation flow is introduced which allows the

designer to estimate and take into consideration the layout stress degradation effect early in the device pattern generation phase. Finally, real design examples are used to demonstrate the proposed flow, and a discussion on the obtained results is presented.

Key words: Analog, Layout, Placement, Automation, SMT, Shape Function, Aspect Ratio, LDE, Stress-Aware, STI.

ACKNOWLEDGMENT

All gratitude to ALLAH

Many thanks my supervisor Prof. Mohamed Dessouky. and Dr.Hazem Said. for their insightful thoughts and and helpful discussions.

I would like to express my gratitude to Prof. Mohamed Dessouky for his support, guidance and hours of fruitful discussions.

Many thanks to my colleagues and friends who helped me during the work on this thesis, thanks a lot Khaled Ashraf, Inas Mohamed, Yousry ElMaghraby, Mohaned ElShawy.

Finally, I am all thankful to my family and friends whom supported me all the way to accomplish this work.

Contents

Li	st of l	Figures		XI
Li	st of '	Fables		XII
N	omen	clature		XIV
1	Intr	oductio	n	1
	1.1	Motiva	tion	1
		1.1.1	CAD for Analog Layout	1
	1.2	Scope	and Contributions	2
	1.3	_	Organization	3
2	Stat	e Of Th	e Art: Automatic Analog Layout Placement	5
	2.1		iction	5
		2.1.1	Conventional Analog Design Flow	5
		2.1.2	Analog Layout Design Challenges	7
		2.1.3	Layout Dependent Effects Overview	7
			2.1.3.1 Well Proximity Effect	8
			2.1.3.2 LOD and OSE Effects	10
			2.1.3.3 Impact of LDEs on Circuit Performance	11
	2.2	Analog	Layout Placement Automation	12
		2.2.1	Layout Placement Constraints	12
		2.2.2	Analog Layout Placement Approaches	14
			2.2.2.1 Knowledge-based Analog Layout Place-	
			ment	15
			2.2.2.1.1 Expert Designer Knowledge	
			Coding	15
			2.2.2.1.2 Template-based Approaches	15

			2.2.2.2	Optimization-based Analog Layout Place-	-
				ment	17
			2.2.2.3	Deterministic Combinatorial Optimiza-	
				tion with Bounded Enumerations	18
			2.2.2.4	Summary of Analog Layout Placement	
				Approaches	20
	2.3	Stress-	-aware Lay	out Design Automation	21
		2.3.1		or Layout Folded Structure	22
			2.3.1.1	STI Stress Plots	24
			2.3.1.2	Effect of Channel Length	25
			2.3.1.3	Layout Context Effect on STI	26
			2.3.1.4	Bias Voltage Effect	29
		2.3.2	Stress-av	vare Layout Design Automation	30
			2.3.2.1	Schematic-based Approaches	30
			2.3.2.2	Layout-based Approaches	31
			2.3.2.3	Hybrid-based Approaches	32
	2.4	Summ	ary		32
•	ъ	1.0	14 A	D : D // C /: E	22
3		_		re Devices Pattern Generation Flow	33
	3.1			oot on Davissa Matching	33 33
	2.2	3.1.1		act on Devices Matching	
	3.2	-		Aware Devices Pattern Generation Flow	34 36
		3.2.1		outs	
		3.2.2	3.2.2.1	Generation Module	37
				1 2	37
			3.2.2.2	Template Layout LDE Extraction and STE Stress Plot Generation	37
		3.2.3	Dottorn /	Absolute Mismatch Factor	38
	3.3			e	30 40
	3.3	3.3.1			40
		3.3.1		e Generation Module	40
	3.4				42
	3.5				43
	5.5	Summ	ai y		43
4	Prop	posed A	nalog Lay	out Placement Flow	44
	4.1				44
	4.2	T21 (7-4-1	ions	44

CONTENTS

	4.3	SMT I	Based Placement Overview	45
	4.4	Propos	sed Layout Placement Flow	46
		4.4.1	Flow Inputs	47
		4.4.2	Building Blocks Layout Generation:	47
		4.4.3	Valid Sub-blocks Aspect Ratio Combinations:	48
		4.4.4	Valid Placements Optimization	48
		4.4.5	Layout Extraction and Simulation	48
	4.5	Flow A	Architecture	49
		4.5.1	User Inputs	50
		4.5.2	Core Placement Engine Module	52
			4.5.2.1 Generate From Source	52
			4.5.2.2 Sub-blocks Generation	53
			4.5.2.3 Placement Engine	54
			4.5.2.4 Placed Layout View Generation	57
			4.5.2.5 Layout View Verification	59
	4.6	Summ	ary	60
5	Exp	eriment	tal Results and Discussion	61
	5.1	Introd	uction	61
	5.2	Currer	nt Mirror Stress-aware Device Matching	61
		5.2.1	Stress-aware Flow Inputs	62
		5.2.2	Layout Template Generation	63
		5.2.3	Layout Template LDE Extraction and STI stress	
			Plot Creation	64
		5.2.4	Devices Currents Matching Ratio	65
			5.2.4.1 Absolute Mismatch Factor	66
		5.2.5	Results Comparison With Post-layout Simulations	67
		5.2.6	Discussion	72
	5.3	Two-S	tage Miller OTA Layout Placement	72
		5.3.1	Flow Inputs	73
		5.3.2	Building Blocks Layout Generation	74
		5.3.3	Valid Sub-Block Aspect Ratio Combination	74
		5.3.4	Placement Optimization	77
		5.3.5	Discussion	80
	5.4		arator Layout Placement	82
		5.4.1	Flow Inputs	83
		5.4.2	Building Blocks Layout Generation	85

CONTENTS

			5.4.2.1	Pre-amplifier Sub-blocks layout gener-	
				ation	85
			5.4.2.2	latch and buffer Sub-blocks layout gen-	
				eration	87
		5.4.3	Valid Su	ab-Block Aspect Ratio Combination	90
		5.4.4	Placeme	ent Optimization	92
		5.4.5	Discussi	ion	97
	5.5	Summ	ary		97
6	Con	clusion	s and Sug	gestions For Future Work	98
	6.1	Conclu	usion		98
	6.2	Sugge	stion For l	Future Work	98
Pu	ıblica	tions			100
Re	eferen	ices			101
Αŗ	pend	lix			108

List of Figures

2.1	Conventional Analog Design Flow	6
2.2	(a) Digital design flow, (b) and the analog design flow	
	time line [1]	7
2.3	Dopants scattering near the well edge[22]	8
2.4	Vt versus well-edge distance for 3.3V nMOS device on a	
	0.13um technology [19]	9
2.5	Device layout with respect to STI [22]	11
2.6	NMOS device layout with a) 4, b) 8 and c) 16 finger[36]	12
2.7	Mirror-symmetry constraint	13
2.8	Common centroid placement configuration	14
2.9	LAYGEN II: proposed design flow [9]	16
2.10	AIDA layout-aware sizing flow [16]	17
2.11	Enhanced shape function flow [6]	19
2.12	SMT based placement flow	20
2.13	Chronological representation of automatic layout genera-	
	tion tools [9]	20
2.14	STI applied mechanical stress [18]	21
2.15	STI stress effect on different devices [19]	21
2.16	STI parameters[20]	22
2.17	Schematic of folding technique: a) Common transistor, b)	
	Folded transistor	23
2.18	Layout of folding technique [45]	23
2.19	NOMS layout structure for generating Stress plot	24
2.20	a. NMOS and b. PMOS STI Stress plots	25
2.21	Pattern layout with different channel length	26
2.22	NMOS Stress plot for different channel length	26

LIST OF FIGURES

2.23	Layout of 8 fingers device sharing sources, and sharing bulks	27
2 24	Current measures for layouts in Fig.2.23	27
	Layout of 4 fingers device sharing diffusion	28
	Layout of 4 migers device sharing diffusion	28
	Two 4-finger devices bulk separated Versus two 4-finger	20
2,21	devices in isolation	29
2 28	NMOS biasing characteristics	29
2.20	NIVIOS biasing characteristics	29
3.1	Different pattern realization of two current mirror devices	
	[45]	34
3.2	Proposed STI-aware pattern generation flow	35
3.3	Template device formed of 38 finger	37
3.4	STI stress plot Generation Testbench	38
3.5	STI stress plot at each DC operating point from schematic	
	for devices A, B, C and D	38
3.6	Extracted drain current for each finger in the pattern	39
3.7	Template Generation Module flow architecture	41
4.1	Proposed analog placement flow	46
4.2	Proposed flow architecture overview	49
4.3	Different realizations of a differential pair sub-block and	<i>-</i> .
	the sub-block shape function	54
4.4	Valid placements flow overview	55
4.5	Valid placements flow overview	56
4.6	a) Placement abstract view, b) Placement real transistor	~ 0
4.7	view	58
4.7	Physical verification, extraction and post-layout simula-	59
	tion flow	39
5.1	Comaparator pre-amplifier schematic diagram	62
5.2	Lower NMOS current mirror	62
5.3	Layout template device	63
5.4	NMOS testbench	64
5.5	NMOS STI stress plot at each DC operating point from	
	schematic	64
5.6	Pattern 1: Modeled current generated using the flow	65
5.7	Pattern 2: Modeled current generated using the flow	65