Circulating Osteopontin Levels in Patients with Type 1 Diabetes Mellitus and Its Association with Vascular Complications

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Magdy Elsayed Ahmed Ebrahim

M.B.B.C.H Ain Shams University

Supervised by

Prof. Abeer Ahmed Abd Elmaksoud

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Prof. Nivan Taha Ahmed Ismail

Consultant of Radiology
Faculty of Medicine – Ain Shams University

Dr. Enas Mohamed Hamed Salama

Lecturer of Pediatrics Faculty of Medicine – Ain Shams University

> Faculty of Medicine Lin Shams University

> > 2017

ABSTRACT

Objective: Osteopontin (OPN) is a sialoprotein implicated in different immunity and metabolic pathways. OPN plays a significant role in the development/progression of several autoimmune diseases; interestingly, it was also shown to participate in the acute pancreatic islets response to experimentally-induced diabetes in NOD mice. Furthermore, OPN promotes adipose tissue dysfunction, systemic inflammation and insulin resistance.

Aims of this study: To evaluate circulating Osteopontin (OPN) levels in patients with Type 1 DM in comparison to healthy controls and to explore clinical and biochemical correlates of OPN concentrations in those patients and its association with carotid intima media thickness (CIMT) as a marker of subclinical carotid atherosclerosis.

Design: Cross sectional study.

Methods: We enrolled 60 children and adolescents with type 1 diabetes mellitus and 30 healthy sex and age-comparable controls.

Study population: Underwent medical history taking, clinical evaluation, blood sampling for biochemistry and screening for diabetes complications. Serum OPN levels were measured by enzyme linked immunosorbent assay (ELISA).

Carotid intima media thickness (CIMT) as a marker of subclinical carotid atherosclerosis.

Results:

T1DM patients had significantly higher serum OPN levels than controls (5 (4.75 – 10) v.s 1.3 (1 – 1.5) $\mu g/l$, p=0.000). OPN levels in T1DM were positively correlated with disease duration (p<0.01), diastolic blood pressure, albumin excretion rate and Carotid intima media thickness (CIMT) (p<0.05).

OPN levels were significantly increased in patients with micro-vascular complications (p=0.000).

T1DM patients had significantly increased carotid intima media thickness (CIMT) compared to control group (p=0.000) with 21.7% had increased CIMT (p=0.006).

CIMT was significantly increased in patients with micro-vascular complications (p=0.009). 67.6% of patients with micro-vascular complications had increased CIMT (P=0.022).

Analysis of OPN levels in relation to CIMT revealed significant higher levels among patients with increased CIMT than those with normal CIMT (p=0.014).

Conclusions: This Cross sectional study demonstrated that patients with T1DM had increased serum OPN levels and CIMT than controls and higher OPN concentrations are associated with an unfavorable metabolic profile and positive micro-vascular complications in these patients.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Abstract	
Protocol	2
	1
Introduction	
Aim of the Work	3
Review of Literature	
Diabetes Mellitus	4
■ Complications of DM	36
Osteopontin	51
Patients and Methods	81
Results	93
Discussion	163
Summary	188
Conclusion	
Recommendations	194
References	195
Master Table	238
Appendix	248
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Criteria for the diagnosis of diabetes me	ellitus5
Table (2):	Classification of DM	6
Table (3):	Genetic susceptibility to type 1 diamellitus	
Table (4):	Calorie needs for children and young ac	dults 25
Table (5):	Summary of nutrition guidelines for chand/or adolescents with type 1 diamellitus	abetes
Table (6):	Insulin preparations	28
Table (7):	Classification of DKA	37
Table (8):	Standard dilution was diluted	87
Table (9):	Demographic data and complication patients and control group	
Table (10):	Clinical and Laboratory Characterist Patients' Group	
Table (11):	Comparison between Patients' group Control group regarding sex and age	
Table (12):	Comparison between Patients' group control group regarding Anthropos Measures	metric
Table (13):	Comparison between Patients' group Control group regarding Blood Pressure	
Table (14):	Comparison between Patients' group Control group regarding Lipid Profile	
Table (15):	Comparison between Patients' group Control group regarding Lipid Profile	

List of Cables (Cont...)

Table No.	Title	Page No.
Table (16):	Comparison between Patients' group Control group regarding OPN Level CIMT	s and
Table (17):	Relation between increased CIMT and Levels in Patients' group	
Table (18):	Receiver Operating Characteristic Curve for OPN in prediction of inci- CIMT in patients group	reased
Table (19):	Comparison between good (<7.5%) and control (\geq 7.5%) of HbA1c in Patients' regarding OPN & CIMT	group
Table (20):	Comparison between Patients with d duration< 5 and ≥ 5 years regalaboratory & clinical data	arding
Table (21):	Comparison between Patients with d duration< 5 and ≥ 5 years regarding profile	g lipid
Table (22):	Comparison between Patients with d duration< 5 and ≥ 5 years regarding C CIMT)PN &
Table (23):	Comparison between Patients with without micro-vascular complications	
Table (24):	Comparison between Patients with without micro-vascular complic regarding lipid profile	ations
Table (25):	Comparison between Patients with without micro-vascular complic regarding OPN & CIMT	ations

List of Tables (Cont...)

Table No.	Title	Page No) <u>.</u>
Table (26):	Receiver Operating Characteristic Curve for OPN in Prediction of micro-va complications		34
Table (27):	Receiver operating characteristic (ROC) for CIMT in Prediction of micro-va Complications	ascular	35
Table (28):	Osteopontin levels among diabetic pa with micro-vascular complications		86
Table (29):	Receiver Operating Characteristic Curve for OPN in Prediction of all excretion rate (AER)	bumin	37
Table (30):	Correlation between OPN Levels an Other Studied Parameters in Patients		88
Table (31):	Correlation between CIMT and the Studied Parameters in Patients Group.		12
Table (32):	Relation between OPN Levels and the Studied Parameters in Patients Group.		60
Table (33):	Relation between CIMT Level and the Studied Parameters in Patients Group.		54
Table (34):	Multivariate linear regression analyst Predictors of Increased CIMT		5 9
Table (35):	Logistic regression analysis for Predictions-		31

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Possible mechanism for developme type 1 diabetes	
Figure (2):	Proposed model of the pathogenesis natural history of typ 1 diabetes mellit	
Figure (3):	Schematic representation of autoimmune response against pancrea cells	atic β-
Figure (4):	Insulin pump.	32
Figure (5):	Algorithm for the management of disketoacidosis	
Figure (6):	Structure of human osteopontin prindicating selected structural domains	
Figure (7):	OPN in adaptive immunity	59
Figure (8):	Human carotid artery atheromas d stained for OPN and macrophages/ cells (an anti-CD68 antibody was used	foam
Figure (9):	During diet-induced weight gain Ol upregulated and mediates macro- infiltration into adipose tissue	phage
Figure (10):	Proposed scheme of angiotensin II-in osteopontin expression	
Figure (11):	Interplay of pathological mechanism to OPN production and action	
Figure (12):	Sandwich ELISA	77
Figure (13):	IHC technique	78
Figure (14):	Western blotting technique	79
Figure (15):	Standard dilution.	87

Fig. No.	Title	Page No.
Figure (16):	Schematic showing the anatomy and s intima-media arterial wall this evaluation in the carotid system	ckness
Figure (17):	B-mode ultrasound of right common cartery with its midsegment highlighter	
Figure (18):	Patients and control groups regarding	sex 98
Figure (19):	Height Centile in patients and c groups.	
Figure (20):	Waist Circumference Centile in pa and control groups.	
Figure (21):	Systolic blood pressure Centile in pa and control groups.	
Figure (22):	Diastolic blood pressure Centile in pa and control groups.	
Figure (23):	Lipid Profile (mg/dl) in patients and c groups.	
Figure (24):	Total Cholesterol (mg/dl) in patient control groups	
Figure (25):	High density lipoprotein (HDL) (mg/patients and control groups	
Figure (26):	Low density lipoprotein (LDL) (mg/patients and control groups	
Figure (27):	Triglycerides (TG) (mg/dl) in patient control groups	
Figure (28):	Osteopontin (OPN) (µg /l) in patient control groups	

Fig. No.	Title	Page No.
Figure (29):	Carotid intima media thickness (Comm) in patients and control groups	
Figure (30):	Carotid intima media thickness (CIM' in patients and control groups	
Figure (31):	Relation between increased OPN CIMT.	
Figure (32):	ROC for (OPN) in prediction of incr (CIMT) in patients' group	
Figure (33):	HbA1c in patients with disease durati years and ≥5 years	
Figure (34):	Micro-vascular complications as a patients with disease duration <5 and ≥5 years	years
Figure (35):	Neuropathy in patients with diduration < 5 years and ≥ 5 years	
Figure (36):	Albumin excretion rate (AER) in pa with disease duration <5 years and years	d ≥5
Figure (37):	AER in patients with disease duration years and ≥5 years according to albumous creatinine ratio.	ımin /
Figure (38):	Total cholesterol (mg/dl) in patients disease duration <5 years and ≥ 5 year	
Figure (39):	TG (mg/dl) in patients with diduration < 5 years and ≥ 5 years.	
Figure (40):	OPN (μg /l) in patients with diduration <5 years and ≥5 years	

Fig. No.	Title	Page No.
Figure (41):	CIMT (%) in patients with disease dur <5 years and ≥5 years	
Figure (42):	CIMT (mm) in patients with diduration <5 years and ≥5 years	
Figure (43):	Disease duration in patients with without micro-vascular complications.	
Figure (44):	Waist circumference in patients with without micro-vascular complications.	
Figure (45):	BMI in patients with and without r vascular complications	
Figure (46):	Total cholesterol (mg/dl) in patients and without micro-vascular complication	
Figure (47):	Total cholesterol (mg/dl) in patients and without micro-vascular complica according to cholesterol level	ations
Figure (48):	LDL (mg/dl) in patients with and wi	
Figure (49):	TG (mg/dl) in patients with and wi	
Figure (50):	TG (mg/dl) in patients with and wi micro-vascular complications accordi TG level.	ng to
Figure (51):	OPN (µg/l) in patients with and wi	
Figure (52):	CIMT (mm) in patients with and wi	
Figure (53):	CIMT (%) in patients with and wi	

Fig. No.	Title	Page No.
Figure (54):	ROC for OPN in Prediction of vascular complications	
Figure (55):	ROC for CIMT in Prediction of vascular complications	
Figure (56):	ROC for OPN in Prediction of all excretion rate (AER).	
Figure (57):	Negative correlation between OPN at diagnosis	-
Figure (58):	Positive correlation between OPN disease duration in type 1 diabetic pa	
Figure (59):	Positive correlation between OPN an in type 1 diabetic patients	
Figure (60):	Positive correlation between OPN CIMT in type 1 diabetic patients	
Figure (61):	Positive correlation between OPN diastolic blood pressure in type 1 d patients.	iabetic
Figure (62):	Positive correlation between CIMT a in type 1 diabetic patients	•
Figure (63):	Positive correlation between CIM disease duration in type 1 diabetic pa	
Figure (64):	Positive correlation between CIM weight in type 1 diabetic patients	
Figure (65):	Positive correlation between CIM' height in type 1 diabetic patients	
Figure (66):	Positive correlation between CIM waist circumference in type 1 d patients	iabetic

Fig. No.	Title	Page No.
Figure (67):	Positive correlation between CIMT BMI in type 1 diabetic patients	
Figure (68):	Positive correlation between CIMT total cholesterol in type 1 diabetic pati	
Figure (69):	Positive correlation between CIMT LDL in type 1 diabetic patients	
Figure (70):	Positive correlation between CIMT are in type 1 diabetic patients	
Figure (71):	Positive correlation between CIMT OPN in type 1 diabetic patients	
Figure (72):	Positive correlation between CIMT systolic blood pressure in type 1 diapatients	abetic
Figure (73):	Positive correlation between CIMT diastolic blood pressure in type 1 diapatients	abetic
Figure (74):	Relation between OPN (µg/l) neuropathy	
Figure (75):	Relation between OPN (µg/l) and alb excretion rate (AER).	
Figure (76):	Relation between OPN (µg/l) triglycerides (TG) (mg/dl)	
Figure (77):	Relation between CIMT (mm) and revascular complications	
Figure (78):	Relation between CIMT (mm) neuropathy	
Figure (79):	Relation between CIMT (mm) and cholesterol (mg/dl)	

List of Abbreviations

Abb.	Full term
ACE	Angiotensin converting enzyme
	American Diabetes Association
	Albumin excretion rate
	Angiotensin I\II
_	Angiotensin receptor
	Area under the curve
BMI	Body mass index
	Bone morphogenetic proteins
CIMT	Carotid intima media thickness
CNS	Central nervous system
	Continuous subcutaneous insulin infusion
CT	Computed tomography
CVD	Cardio vascular disease
CVD	Coronary heart disease
DBP	Diastolic blood pressure
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
DR	Diabetic retinopathy
ECM	Extra cellular membrane
ECM	Extracellular matrix
ED	Emergency department
EDTA	Ethylene diamine tetra-acetic acid
EEG	Electroencephalography
EGF	Epidermal growth factor
ELISA	Enzyme Linked Immunosorbent Assay
ERK	Extracellular signal regulated kinase
FOXO3	Forkhead box O3
FPG	Fasting plasma glucose
GAD	Glutamic acid decarboxylase

List of Abbreviations (Cont...)

Abb.	Full term
GADA	Glutamic Acid Decarboxylase Antibody
	Gestational Diabetes Mellitus
	Glomerular filtration rate
	Gastric inhibitory polypeptide
	Glycine-Arginine-Glycine-Aspartate-Serine
	Glycosylated hemoglobin
	Hepato cellular carcinoma
	High density lipoprotein
	Hepatocyte growth factor
	Hyperglycemic hyperosmolar state
	Human leukocyte antigen
	Hepatocyte nuclear factor
	Insulin autoantibodies
ICA	Islet cell antibodies
IDDM	Insulin-Dependent Diabetes Mellitus
	Impaired Fasting Glucose
IFN	•
IGT	Impaired Glucose Tolerance
	Immunohistochemistry
IL-1\2	Interlukine-1/2
INGAP	Islet neogenesis associated protein
IPF	Insulin promoter factor
IVGTT	Intravenous Glucose Tolerane Test
LADA	Latent autoimmune diabetes of the adult
LDL	Low density lipoprotein
LXRs	Liver X receptors
MALT	Mucosa associated lymphoid tissue
MCP-1	Monocyte chemoattractant protein-1
MMPs	Matrix metalloproteinases

List of Abbreviations (Cont...)

Abb.	Full term
MODY	Maturity onset diabetes of the young
NAFLD	Non-alcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NIDDM	Non Insulin-Dependent Diabetes Mellitus
NO	Nitric oxide
OD	Optical density
OGTT	Oral glucose tolerance test
OPN	Osteopontin
PAD	Peripheral artery disease
PTEN	Phosphatase and tensin homolog
RA	Rheumatoid arthritis
RAS	Renine-angiotensin system
ROC	Receiver Operating Characteristic
RT-PCR	Real-Time Polymerase Chain Reaction
SBP	Systolic blood pressure
SDS	Standard deviation score
SIBLING	Small integrin-binding ligand N-linked
	glycoprotein
SMAD7	Mothers against decapentaplegic homolog 7
SMC	Smooth muscle cells
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TG	Triglycerides
TGF	Transforming growth factor
ΤGF-β	Transforming growth factor- β
Th1	T helper1
TLRs	Toll-like receptors
TNF	Tumor necrosis factor
VEGF	. Vascular endothelial growth factor