

CMOS LTE Receiver Front-End

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Eng. Eman Badreldeen Abdelghaffar Badr

B.Sc. of Electrical Engineering Electronics and Communications Engineering Department 2011

Supervised by

Prof. Dr. Abdelhalim Zekry

Faculty of Engineering Ain Shams University

Prof. Dr. Yehea Ismail

Director of the Center of Nanoelectronics and Devices (CND)

Zewail City for Science and Technology

American university in Cairo

Dr. Heba Ahmed Shawkey

Associate Prof. – Microelectronic Department Electronics Research Institute (ERI)

Cairo 2017

Examiners Committee

Name: Eman Badreldeen Abdelghaffar Badr Thesis: CMOS LTE Receiver Front-End.

Degree: Master of Science in Electrical Engineering

Examiners Committee	Signature
Prof. Dr. Abdelhalim Zekry Electronics and Communications Engineering Department, Faculty of Engineering - Ain Shams University	
Prof. Dr. Amal Zaki Mohammed Microelectronic Department, Electronics Research Institute (ERI)	
Prof. Dr. Mohamed Amin Desouki Electronics and Communications Engineering Department, Faculty of Engineering - Ain Shams University	

Date: -/-/2017

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the

degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the Department

of Electronics and Communications Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any

other university or institute.

Name: Eman Badreldeen Abdelghaffar Badr

Signature:

Date:

Curriculum Vitae

Name: Eman Badreldeen Abdelghaffar Badr

Date of Birth: 28th of Feb 1990

Place of Birth: Cairo, Egypt

Last University Degree: B.Sc. in Electrical Engineering

Electronics and Communications Dept.

Date of Degree June 2011

DEDICATION

To my parents and my beloved husband, for their everlasting love and support.

ACKNOWLEDGEMENTS

Praise to Allah, Lord of the Worlds, for giving me the power to finish my master thesis.

I would like to thank my supervisors Prof. Dr. Abdelhalim Zekry, Prof. Dr. Yehea Ismail and Dr. Heba shawkey for their continuous guidance, help, and support. I learned so many valuable things from them, they provided me with all the facilities that I need to my research.

Dr. Heba Shawkey was always guiding me step by step through the whole thesis work. She provided me with great help during all phases of design, analysis, and testing.

I'd like to thank Dr. Mohamed Kamal for his support and help. He helped me in solving many issues in simulations and layout. I do really appreciate the effort he exerted and the time he spent with me.

Published Papers

[1] "Wideband Inductorless CMOS RF Front-End For LTE Receivers", accepted on IEEE, ICICDT conference, Texas, USA, May. 2017

CMOS LTE Receiver Front-End

Eman Badreldeen Abdelghaffar Badr Electronics and Communication Department

Supervised by Heba A. Shawkey, Yehea Ismail, and Abdelhalim Zekry

Abstract

More recent, Long Term Evolution (LTE) has been broadly contemplated. The third generation partnership project (3GPP) proposes a Universal Mobile Telephone System (UMTS) which studies several alternative technologies before choosing Wideband Code Division Multiple Accesses (W-CDMA) for the radio access network. The continuing improvements in radio frequency (RF) front-end technology have led to many new and fascinating applications in the fourth generation (4G) wireless communications. The LTE standard takes advantage of the multi-carrier modulation scheme Orthogonal Frequency-Division Multiplexing (OFDM) to increase spectral efficiency, which demands higher linearity because of a non-constant signal envelope. LTE supports both Frequency- Division Duplex (FDD) and Time Division Duplex (TDD) with the wide range of frequency bands from 0.7 GHz to 2.7 GHz in addition to a wide number of channel bandwidth that allocated from 1.4 MHz to 20 MHz.

The use of Complementary Metal Oxide Semiconductor (CMOS) technology in the RF front-end for LTE has increasingly been the object of study over the past few years due to their low power consumption and small physical size. With the increasing usage of mixed-signal integration, reliability requirements for analog CMOS circuit applications have become more critical. The final goal in CMOS integration is to create a monolithic wireless receiver that covers whole RF front-end and baseband. Thus, CMOS process is a suitable candidate for LTE RF front-end development for integration with the digital part.

Different techniques have been proposed for LTE transceiver implementation. In this thesis, the design and implementation of a single path wide band frequency front-end receiver have been presented by using UMC 0.13µm CMOS technology. The LTE receiver covers 0.7 GHz to 2.7 GHz.

Prof. Dr. Abdelhalim Zekry

The proposed design reduces the system complexity and opens the opportunity to increase the integration level and lower power consumption, despite its simplicity. The key building design blocks for the proposed LTE receiver are microstrip patch antenna, wide band active balun, low noise amplifier (LNA) and mixer.

The first part of the thesis is to design the passive part of LTE receiver by designing a microstrip patch antenna with defected ground structure. The proposed antenna is fabricated using FR-4 material substrate with dielectric constant of ε_r =4.4, height h_{sub}= 1.6 mm and loss tangent δ = 0.02. The overall dimensions of the antenna are 10mm x10mm x1.6mm with 50 Ω impedance. The antenna operates between 0.7G Hz to 3GHz for return loss -6 dB. The simulated antenna achieved a bout average radiation efficiency of 80 %, average antenna gain of about 4.2 dB with omnidirectional radiation pattern over the operating band. The proposed antenna was fabricated using the photolithographic method and measured using the vector network analyzer N9918A. There are good agreements between the simulated and measured results. All simulations are carried out using 3D EM commercial High Frequency Structural Simulator (HFSS) ver. 14.0.

The second part is to design the active part of the front end receiver which includes balun, low noise amplifier, and mixer. Optimization of current reuse LNA using linearization technique followed by NMOS switches mixer stage are effectively used to achieve maximum gain, low noise figure, and low power consumption The circuit level simulation will be carried out using ADS tool, while layout design and verification will be obtained by cadence tool. Each component was simulated separately and then the three components were combined with the fabricated antenna to make a RF front-end for LTE applications. At the pre-simulation, the receiver front-end provides a reasonable balun matching with an S₁₁ below -10 dB and S₂₁ ranges from 15 to 22 dB. The in band IIP3 ranges from -3 dBm to -9.8 dBm and NF ranges from 7.5 dB to 5.6 dB while the power consumption is 26.14 mW. At post-simulation, the receiver front-end provides a reasonable balun matching with an S₁₁ below -9 dB and S₂₁ ranges from 15 to 20 dB. The in band IIP3 ranges from -4 dBm to -10.2 dBm and NF ranges from 7.9 dB to 6.5 dB while the Power consumption 26.14 mW from a 1.2 V supply. Using these optimizations, our proposed receiver can be a good candidate for LTE applications. The layout of the design occupies 0.362 mm²

Prof. Dr. Abdelhalim Zekry

Table of contents

D. Harrisa	Page
Dedication Asknowledgement	V
Acknowledgement Published Popus	VI
Published Papers	VII
Abstract	VIII
Table of contents	X
List of Tables	XIII
Lists of Figures	XIV
List of abbreviations	XVI
Chapter (1)	
Introduction	
1.1 Motivation	1
1.2 Thesis Objective	2
1.3 Achievements	2
1.4 Commercial Software packages used	3
1.5 Thesis Content	3
Chapter (2)	
Review on LTE Receivers	
2.1 Introduction	5
2.2 Receiver Design Challenges	5
2.2.1 RF gain	
2.2.2 Noise Figure (NF)	
2.2.3 Linearity	
2.2.4 Power Matching	
2.2.5 Stability	
2.3 Long Term Evolution (LTE)	10
2.3.1 FDD LTE Frequency Band Allocations	
2.3.2 TDD LTE Frequency Band Allocations	
2.3.3 LTE Specifications	
2.3.3.1 Noise Figure	
2.3.3.2 Third Order Intercept Point (IIP3)	
2.4 Receiver architectures	15
2.4.1 Narrowband Receiver	
2.4.1.1 Super heterodyne Receiver	
2.4.1.2 Zero IF Receiver	
2.4.1.3 Low IF Receiver	
2.4.2 Wideband Receiver	
2.4.2.1 Digital RF Front-End Receiver	
2.4.2.2 Multiple Parallel Narrowband Front-End	

2.4.2.3 Combining Mixer With Multiple LNAs2.4.2.4 Signal Path Wideband Receiver Front-End	
2.5 Conclusion	20
Chapter (3) Zero IF Receiver Building Blocks Survey	
3.1 Introduction	21
3.2 Wideband Antenna	21
3.2.1 Antenna Parameters	
3.2.1.1 Input Bandwidth	
3.2.1.2 Gain	
3.2.1.3 Radiation Pattern	
3.2.1.4 Directivity	
3.2.2 Microstrip Antennas	
3.2.3 Examples of Patch Antennas	
3.2.4 Feeding Methods	
3.2.4.1 Coaxial Probe	
3.2.4.2 Microstrip Line Feed	
3.2.4.3 Proximity Coupling	
3.2.4.4 Aperture Coupling	
3.3 Wideband Balun	27
3.3.1. Passive Balun	
3.3.2. Active Balun	
3.3.2.1 Cascaded CS Amplifiers	
3.3.2.2 Active Balun With Correction Technique	
3.3.2.3 CG-CS Amplifier	
3.4 Wideband LNA Topologies	30
3.4.1 Resistive Termination Amplifier	
3.4.2. Shunt feed-Back Amplifier (SFB)	
3.4.3. Common Gate (CG) Amplifier	
3.4.4. Inductive Degenerated Amplifier	
3.5 Wideband Mixer Topologies	34
3.5.1 Passive Mixers	
3.5.2 Active Mixers	
3.5.2.1 Single-balanced active mixer	
3.5.2.2 Double balanced active mixer (Gilbert mixer)	
3.6 Linearization Techniques	36
3.6.1 Diode Connected MOSFT Transistor	
3.6.2 Negative Impedance	
3.7. Conclusion	38
Chapter (4)	
Wideband Front-End Receiver Design	
4.1 Introduction	39

4.2 Wideband Patch Antenna	40
4.2.1 Patch Antenna Design	
4.2.1.1 Antenna Dimensions	
4.2.1.2 Ground Plane	
4.2.1.3 Microstrip line Feed	
4.2.1.4 Simulated And Measures Results	
4.3 Wideband Active Balun	48
4.3.1 Balun Circuit Analysis	
4.3.2 Balun Circuit Design	
4.3.3 Simulation Results	
4.4 Wideband LNA	56
4.4.1 LNA Circuit Analysis	
4.4.2 LNA Circuit Design	
4.4.3 Simulation Results	
4.4.4 The Figure of Merit, FOM	
4.5 Wideband Mixer	68
4.5.1 Mixer Circuit Analysis	
4.5.2 Mixer Circuit Design	
4.5.3 Simulation Result	
4.6 Final Topology For Proposed Receiver RF Front-End	74
4.6.1 Receiver Circuit Design.	
4.6.2 Simulation Result	
4.7 Performance Comparison	83
Chapter (5)	
Layout And Post Layout Simulation	
5.1 Receiver Layout	84
5.2 Post-layout Simulation Result	85
5.3 Conclusion	89
Chapter (6)	
Conclusions and Future Work	

List of Tables

		rage
Table 2.1	The specified frequency bands of FDD LTE and the channel bandwidths	11
Table 2.2	The specified frequency bands of TDD LTE and the channel Bandwidth	12
Table 2.3	Minimum sensitivity level of the user equipment for different frequency bands	12
Table 2.4	Interferers and blockers for different channel bandwidths	13
Table 2.5	LTE Specifications	14
Table 2.6	Comparison between the wideband and narrowband receiver	19
Table 3.1	Comparison between the baluns topologies	38
Table 3.2	Comparison between the LNA's topologies	38
Table 3.3	Comparison between the mixer's topologies	38
Table 4.1	Rectangular geometrical parameters	44
Table 4.2	The simulated transistors parameters	53
Table 4.3	The numerical load resistance	53
Table 4.4	The simulated coupling capacitances parameters	53
Table 4.5	The simulated bias voltages and resistors	53
Table 4.6	The simulated transistors parameters	61
Table 4.7	The simulated coupling capacitances	61
Table 4.8	The numerical feedback resistance	61
Table 4.9	Comparison of wideband CMOS LNAs: The recently published work and this work	67
Table 4.10	The simulated bias voltages and resistors	70
Table 4.11	The simulated transistors perimeters	71
Table 4.12	the simulated coupling capacitances parameters	71
Table 4.13	The numerical resistance values	71
Table 4.14	The simulated transistors parameters	78
Table 4.15	The simulated coupling capacitances	78
Table 4.16	The numerical resistance values	79
Table 4.17	The simulated bias voltages and resistance	79
Table 4.18	The performance comparison of our work and recent published work	83
Table 5.1	Performance comparison of our work (simulated/post simulated) with LTE specifications	s 89

List of Figures

Fig.2.1. P1dB compression point characteristic	6
Fig.2.2. Distorted signal due to the interferers (b) 3 rd orders intercept point calculation	7
Fig. 2.3 Two port network with the propagating waves	8
Fig.2.4. The data rate growth among the different mobile communication systems generations	10
Fig.2.5. Superheterodyne receiver architecture	15
Fig.2.6. Zero IF receiver architecture	16
Fig.2.7. Low IF receiver	16
Fig.2.8. Mixed-digital RF front-end receiver	17
Fig.2.9. Multiple parallel narrow-band front-end receiver	17
Fig.2.10. Combining mixer with multiple LNAs front-end receiver	18
Fig.2.11. Architecture of the wideband receiver front-end receiver	18
Fig.3.1. The model for the Feed Line	22
Fig.3.2. Radiation pattern; (a) Cartesian diagram and (b) polar diagram	23
Fig.3.3. The Micro-strip feed for the antenna Structure	24
Fig.3.4. Geometry of different microstrip patch antennas	25
Fig.3.5. Coaxial line feed geometry	25
Fig.3.6. Microstrip patch antenna with feed from side	26
Fig.3.7. Proximity coupling feed method	26
Fig.3.8. Aperture coupling feed method	27
Fig.3.9. Gain error and phase error of conventional active balun	28
Fig.3.10. Wideband balun using cascaded amplifiers	29
Fig.3.11. The MPCCT active balun	29
Fig.3.12. Active balun using CG-CS amplifiers	30
Fig.3.13. Common source amplifier with a resistive terminated	31
Fig.3.14. Shunt feedback (SFB) amplifier	32
Fig.3.15. Common-gate amplifier	33
Fig.3.16. Inductive degenerated amplifier with input matching using LC ladder	33
Fig.3.17. Mixer model	34
Fig.3.18 Single balanced mixer	35
Fig.3.19. Double balanced active mixer	36
Fig. 3.20 LNA with Diode connect transistor technique	37
Fig. 3.21 LNA with Negative impedance technique	37
Fig. 4.1 Block diagram of the proposed LTE receiver	39
Fig. 4.2 The geometry of the conventional patch antenna. (a) Top view (b) Bottom view	40
Fig. 4.3 Solid and effective length of a microstrip patch antenna	41
Fig. 4.4 The antenna in HFSS simulator, and (b) The simulated return loss of the conventional rectangular	
antenna	44
Fig. 4.5: Design steps (a) Conventional rectangular patch antenna, (b) half circle patch antenna, and (c)	
half circle patch antenna with half circle shape	45
Fig. 4.6 The final antenna geometry (a) 3D antenna in HFSS, (b) top side, and (b) bottom side	45
Fig. 4.7 The rETotal at Freq. 1.5 GHz (red) at Phi=0deg, (black) at Phi=90deg	46

Fig. 4.8 Photo of the fabricated antenna with the vector analyzer	47
Fig. 4.9 The simulated and measured return loss of the antenna	47
Fig. 4.10 The circuit schematic of the wideband active balun.	48
Fig. 4.11 (a) CG amplifier with current source (b) small signal equivalent circuit	49
Fig. 4.12 The wideband active balun includes CG and CS stages	51
Fig. 4.13 Balun input matching (S11)	54
Fig. 4.14 Balun noise figure over LTE band	54
Fig. 4.15 IIP3 wide band active balun	55
Fig. 4.16 Gain and phase error of the active balun circuit	56
Fig. 4.17 The proposed wide band LNA circuit design	57
Fig. 4.18 (a) CMOS inverter with the resistive feedback and (b) small signal equivalent circuit	59
Fig. 4.19 LNA input matching (S ₁₁)	62
Fig. 4.20 LNA gain (S_{21})	63
Fig. 4.21 LNA Noise figure across LTE band	63
Fig. 4.22 LNA P1 dB across LTE band	64
Fig. 4.23 LNA in-band IIP3 across LTE band	65
Fig. 4.24 LNA stability factor across LTE band	65
Fig. 3.25 Gilbert-mixer circuit	68
Fig. 4.26Tthe proposed mixer circuit architecture	69
Fig. 4.27 Mixer input matching (S_{11})	72
Fig. 4.28 Mixer gain (S_{21})	72
Fig. 4.29 Mixer Noise figure across LTE band	73
Fig. 4.30 Mixer P1 dB across LTE band	73
Fig. 4.31 Mixer in-band IIP3 across LTE band	74
Fig. 4.32 Proposed RF front-end with merged LNA and mixer circuit	75
Figure 4.33: The output buffer (active matching stage)	77
Fig. 4.34 The complete receiver test bench	77
Fig. 4.35 S ₁₁ for receiver RF front-end	79
Fig. 4.36 S ₂₂ for receiver RF front-end	80
Fig. 4.37 Conversion gain of the RF front-end receiver	80
Fig. 4.38 Noise Figure for receiver RF front-end receiver with/without the balun	81
Fig. 4.39 The P1 dB for receiver RF front-end	82
Fig. 4.40 The in-band IIP3 for receiver RF front-end	82
Fig. 5.1 Chip micrograph of the RF front-end receiver	84
Fig. 5.2 Pre- and Post-layout simulation of S ₁₁	85
Fig. 5.3 Pre- and Post-layout simulation of S ₂₂	86
Fig. 5.4 Pre- and Post-layout simulation of S ₂₁	86
Fig. 5.5 Pre- and Post-layout simulation of noise figure	87
Fig. 5.6 Pre- and Post-layout simulation of P1dB	88
Fig. 5.7 Pre- and Post-layout simulation of IIP3 dB	88