

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

671,381528

SIMULATION AND MODELING OF TUNNELING CARBON NANOTUBES FIELD EFFECT TRANSISTORS (T-CNFETS)

W7V9 P

By

Mohamed Nabil Mohamed Mostafa El-Zeftawi

B.Sc. in Electronics and Communications Engineering - Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Engineering Physics

171/6

Faculty of Engineering, Cairo University
Giza, Egypt
July 2007

•		

SIMULATION AND MODELING OF TUNNELING CARBON NANOTUBES FIELD EFFECT TRANSISTORS (T-CNFETS)

By

Mohamed Nabil Mohamed Mostafa El-Zeftawi
B.Sc. in Electronics and Communications Engineering – Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Engineering Physics

Supervised by

Dr. Nadia Hussein Rafat

Associate Professor, Faculty of Engineering, Cairo University

Nadia Rafat

Faculty of Engineering, Cairo University
Giza, Egypt
July 2007

SIMULATION AND MODELING OF TUNNELING CARBON NANOTUBES FIELD EFFECT TRANSISTORS (T-CNFETS)

By

Mohamed Nabil Mohamed Mostafa El-Zeftawi

B.Sc. in Electronics and Communications Engineering - Cairo University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in

Engineering Physics

Approved by the Examining Committee:

Prof Dr Salah El-Din El-Mahawy Member

Prof Dr Wael Fikry Farouk Member

Nadia Rafat

Faculty of Engineering, Cairo University Giza, Egypt July 2007 to mile

ACKNOWLEDGEMENTS

I would like to express my deep gratefulness to my thesis advisor, Dr. Nadia Hussein Rafat. I could not have imagined having a better advisor and mentor for my Master. She conducted a lot of fruitful discussions and has been a source of inspiration and encouragement. She spent a lot of effort guiding me through the Master, correcting and revising everything in the thesis.

I would also like to thank Prof. Kaustav Banerjee, Department of Electrical and Computer Engineering UCSB, for many fruitful discussions and also for providing me with a lot of references that were very helpful.

Special thanks to the staff members of the department of Mathematics and Engineering Physics for their support and encouragement to complete this work in an appropriate way. I'm indeed indebted to Engineer Tamer Ali Ashour, Cairo University staff and Ph.D. student in ECE Rice University, for providing me with many papers that I needed to complete my work. My work wouldn't have been in this way if it weren't for his help.

Finally I would like to thank my parents, my brother, my sister, and my fiancée for their understanding, endless patience, and support to me during my work. I dedicate this thesis to all of them.

Table of contents

		Page
List	of Figures	VIII
List	of Symbols	XV
Abst	ract	XVIII
1.	Introduction	1
1.1.	An Overview of Transistors	2
1.2.	Some of MOSFET Short Channel Effects (SCEs)	4
1.2	2.1. Threshold Voltage Roll-off in Linear Region	4
1.2	2.2. Drain-Induced Barrier Lowering (DIBL)	5
1.2	2.3. Bulk Punch-through	6
1.3.	Some Methods to Suppress SCEs in MOSFETs	7
1.4.	Carbon Nanotube Field Effect Transistor (CNFET)	8
1.4	1.1. History of CNTs and CNFETs	9
1.4	2.2. Comparing CNFETs to Current Si-based FETs	12
1.5.	Thesis Objective	14
1.6.	Organization of the Thesis	15
2.	Carbon Nanotubes Properties	17
2.1.	Introduction	18
2.2.	Basic Background	18
2.3.	Bonding Between Carbon Atoms in CNTs	21
2.4.	CNT Fabrication	25
2.4	-1. Arc Discharge	25
2.4	.2. Laser Ablation	26
2.4	-3. Chemical Vapor Deposition (CVD)	27
2.5.	CNTs Electronic Properties	29
2.6.	CNTs Mechanical Properties	36
2.7.	Applications of CNTs	37

3.	Simulating Quantum Transport in CNFETs	39
3.1		
3.2		
3.3	Scattering and the Green's Functions	
	.3.1. Tight Binding Hamiltonian for a 1-D Device	
	3.2. Contact's Self Energy	
	3.3. Electron and Hole Densities Expressed in Terms of Green's Fund	
	Electron Correlation Function	
	Hole Correlation Function	
3.4.		
4.	CNFETs Comparison Using The NEGF Formalism	n 55
4.1.	WITH MOOFET LIKE ON LIS	
4.	1.1. Introduction	56
4.	1.2. Operation of MOSFET-Like CNFETs	57
	Effect of CNT Chirality (Energy gap) on MOSFET-Like CNFET O	peration 62
	Effect of Source and Drain Doping on MOSFET-Like CNFET Open	ration 67
	Effect of Heavy Doping Half the Drain Side	
	.3. MOSFET-Like CNFET Subthreshold Swing Slope	
	.4. Conclusion	
	p-i-n Tunneling CNFETs	
	2.1. Introduction	
4.2	2.2. Operation of T-CNFETs	
	Effect of CNT Chirality (Energy gap) on T-CNFET Operation	
	Effect of Source and Drain Doping on T-CNFET Operation	
	.3. p-i-n CNFET Subthreshold Swing Slope	
4.3.	MOSFET-like and Tunneling CNFETs Similarities and Differer	ices95
5 .	Proposed Computational Model for T-CNFETs	101
5.1.	Introduction	
5.2.	The Proposed Computational Model	
	1. Evaluation of the Conduction Band Profile	104
5.3.	Assessment of the Model	110