MATHEMATICAL MODELING FOR AIRPORTS GASEOUS EMISSIONS

CASE STUDY ON CAIRO INTERNATIONAL AIRPORT

Submitted By

Usama Ali Mahmoud Abd Elwahab

B.Sc. of Science (Physics, Computer Science), Faculty of Science,
Ain Shams University, 2006

Diploma in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2010

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

Institute of Environmental Studies and Research

Ain Shams University

APPROVAL SHEET

MATHEMATICAL MODELING FOR AIRPORTS GASEOUS EMISSIONS

CASE STUDY ON CAIRO INTERNATIONAL AIRPORT

Submitted By

Usama Ali Mahmoud Abd Elwahab

B.Sc. of Science (Physics, Computer Science), Faculty of Science, Ain Shams University, 2006

Diploma in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2010

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences This thesis Towards a Master Degree in Environmental Sciences Has been approved by:

Name Signature

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Community Medicine and Environment in Department of Environmental Medical Sciences Institute of Environmental Studies & Research Ain Shams University

2-Dr. Ashraf Saber Zakey Abdel Mawgoud

Under Secretary of State for Research and Climate The Egyptian Meteorological Authority Ministry of Civil Aviation

3-Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy

Prof. of Public Health in Department of Environmental Basic Science Institute of Environmental Studies & Research Ain Shams University

MATHEMATICAL MODELING FOR AIRPORTS GASEOUS EMISSIONS

CASE STUDY ON CAIRO INTERNATIONAL AIRPORT

Submitted By

Usama Ali Mahmoud Abd Elwahab

B.Sc. of Science (Physics, Computer Science), Faculty of Science,
Ain Shams University, 2006

Diploma in Environmental Sciences, Institute of Environmental Studies and
Research, Ain Shams University, 2010

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy

Prof. of Public Health in Department of Environmental Basic Science Institute of Environmental Studies & Research Ain Shams University

2-Dr. Mohamed Hassan Mahmoud Khalil

Associate Prof. in Department of Geophysics Faculty of Science Cairo University

ACKNOWLEDGMENT

First I pray to Allah, and thank him, whom gives me the power to make this research; second I would like to express my sincere gratitude to my supervisor **Prof. Mahmoud Ahmed Hewehy** for his continuous support to me, that without his patience, motivation, and his immense knowledge I couldn't accomplish this research.

Further I would like to thank **Dr. Mohamed Hassan** about his useful comments and guidance through the learning process of this master thesis My sincere thanks also goes to **Dr. Mohamed Sherby**, who provided me and support me to start my post graduate studies and show me the way to environmental studies and research institute.

Also I can't forget to thank my colleagues in CAC general administration of environment; they helped me in collecting the necessary data of this thesis.

Mr. Tamer Nada I would thank him for his support and help to finalize this research

Last but not the least, I would like to thank my family: my parents, my brother, my sister and all my friends whom supported me through all this thesis stages and help me in my life in general.

ABSTRACT

Cairo International Airport (CAI) is the major airport in Egypt and it is going on to expand its operations and strategic plans aiming to become a large hub airport in the Middle East while the civil aviation is one of the most growing up industries around the world, which consumes large amounts of fossil fuel in its various operations. So its gaseous emission may effect on human health, agriculture, economic and climate. This makes determination of its gaseous emissions sources and inventorying the pollutants from its different operations very important in studying the impacts of these emissions on its vicinities, Workers and determination the airport footprint.

Using mathematical count and calculations for Aircraft landing and takeoff cycles, Ground service vehicle, fuel used in power generators and land side traffic in airport roads and using there emission factor to determine the Airport emissions then use this inventory as input data In Flexpart modeling software to calculate the dispersions of these emissions in two scenarios for winter and summer.

We found that the most polluted area is the area near runway end 05C which is near to Nasr city district due to aircraft operation as the landing takeoff cycle is concentrated in this area 77624 movement/year, which represent about 52.8% of the annual total LTO Cycles . Also there are high traffic movements in comparison to the total passenger movement 245,000vehicle/day.

So for 2013 the annual emission calculated emitted from CAI is CO₂: 208,217.40 Ton/Year, HC: 5,180.88 Ton/Year, CO 27,285.86

Ton/Year NO_x 3,270.80 Ton/Year, N_2O : 0.001 Ton/Year and So_2 : 67.94 Ton/Year.

We noted that The most of land side vehicle are public transportations and Aviation services companies employ owned cars; thus makes the underground is recommended as an effective environmental control measure to reduce the traffic emission, also Some of Narrow bodies Aircrafts Such like Embraer- E190, Tupolev Tu-204 and like Embraer- E170 which represent about 20% of CAI operation and more polluter than others aircrafts such like A320 and B738 need more research to study the benefits of using those model or use another alternatives to reduce the emissions and improve the air quality, Runway Sid 05R and 05L should be used to reduce the load on 05C and reduce the environmental weight on Nasr city and Sheraton districts

Table of Contents

ABSTRACT	III
CHAPTER -1 INTRODUCTION	1
Introduction	3
1.1 Sources of Air Pollution	5
1.2 Point, area, and line sources	5
1.3 Gaseous and particulate emissions	6
1.4 Primary and secondary air pollutants	6
1.5 Emission factors	7
1.6 Emission inventories	7
1.7 Effects of Air Pollution	8
1.7.1 Economic losses	9
1.7.2 Visible and quantifiable effects	10
1.7.3 Deterioration of exposed materials	10
1.7.4 Health effects	11
1.7.5 Atmospheric effects	14
1.8 Meteorology	15
1.8.1 Wind	16
1.8.2 Scales of air motion	16
1.8. 3 Wind rose	17
1.10 Atmospheric dispersion modeling	19
CHAPTER -2 REVIEW OF LITERATURE	23
Review of Literature	25
2.1 Civil aviation Industry Characteristic	25
Types of Aircrafts and Airports	25

2.1.1 Categories of Aircraft	25
2.1.2 Classification of Airports	26
2.1.3 Terminal Facilities	28
2.1.4Airport (Aerodrome)	28
2.1.5 Airport (Aerodrome) traffic density	28
2.1.6 Aircraft classification number (ACN)	29
2.1.7 Aircraft stand	29
2.1.8 Apron	29
2.1.9 Runway	29
2.1.10 Taxiway	29
2.1.11 Vehicle Ground Service Handling	30
2.1.12 Airport operations	36
2.2 Cairo International Airport	36
2.2.1 Overview	36
2.2.2 History	37
2.2.3 Terminals	38
2.2.4 Airport Reference Point ARP	42
2.3 Ground transport	43
2.4 CAI Roads and landside traffic	44
2.5 Airports Air Pollutants sources	47
CHAPTER -3 MATERIAL AND METHODS	49
Material and Methods	51
3.1 Aircraft Emission	51
3.2 GSE Emissions calculation	53
3.2.1 Aircraft Emission Factor (EF) with GSE Emissions	54
3.3 Land Side vehicle Emission (Traffic)	60
VI	

	3.3.1 Egyptian MOBILE Emission Factor	. 61
	3.4 Secondary Power plant fuel consumption	. 64
	3.5 Dispersion Modeling Software	. 65
С	HAPTER -4 INVENTORY RESULTS AND MODELING	. 67
Ir	nventory Results and Modeling	. 69
	4.1 Cairo Airport Wind Rose	. 69
	4.2 Annual Aircraft movement	. 70
	4.3 Total Annual Aircraft movement Emissions (Ton)	. 74
	4.4 Runway used location for aircraft operations	. 76
	4.5 Cairo Airport working Ground Service Diesel Vehicles	. 77
	4.6 Traffic Emission (land Side)	. 79
	4.7 Secondary Power plant emissions	. 81
	4.8 Total Annual Emission	. 82
	4.9 Dispersion data for CAI Emissions	. 83
	4.9 Dispersion data for CAI Emissions	
		. 83
	4.9.1 Winter	. 83 . 83
	4.9.1 Winter	. 83 . 83 . 84
	4.9.1 Winter	. 83 . 83 . 84 . 85
	4.9.1 Winter	. 83 . 84 . 85 . 86
	4.9.1 Winter	. 83 . 84 . 85 . 86
	4.9.1 Winter	. 83 . 84 . 85 . 86
	4.9.1 Winter	. 83 . 84 . 85 . 86 . 87 . 88
	4.9.1 Winter	. 83 . 84 . 85 . 86 . 87 . 88
	4.9.1 Winter	. 83 . 84 . 85 . 86 . 87 . 88 . 88

CHAPTER -5 CAI AMBIENT AIR MONITORING STATION	93
CAI Ambient Air monitoring station	95
5.1 Introduction	95
5.2 Cairo Airport Air Quality Monitoring Station	95
5.3 AQ Monitoring Station data	97
5.3.1 CO	97
5.3.2 Sulphur Dioxide SO2	98
5.3.3 Nitrogen Dioxide	99
5.3.4 Ground Ozone O3	100
Conclusion	101
Recommendation	102
SUMMARY	103
REFERENCES	107

List of Figures

1- Figure 1.1 Area and point Sources6
2-Fig 1.2 Atmosphere classifications
3FIG 1.4: Wind Rose and corresponding particulate fallout Pattern18
4 Fig 1.3: Wind rose
5- Fig 1.6 The Gaussian distribution curve19
7-Fig. 1.8 Coordinate system showing Gaussian distribution in the horizontal
and vertical20
6- Fig1.7 Properties of the Gaussian distribution Adapted, with permission20
8-Fig 1.9: multiple plume images used to simulate plume reflections21
9-Fig 1.10 Cairo International Airport satellite vision
10- Fig 1.11 CAI ARP42
11- Fig 1.12 Cairo International Airport roads45
12-Fig 3.1 landing take of (LTO) Cycle51
13-Fig 4.1 Cairo airport Wind rose69
14-Fig 4.2 comparison between the highest Aircraft LTO Movement70
15-Fig 4.3 comparison between Aircrafts with More Than 100 LTO Cycle
Movements Movement71
16-Fig 4.4 comparison between Aircrafts with More Than 100 LTO Cycle
Movements Movement72
17-Fig 4.5 comparison between runways usage76
18-Fig 4.6 comparison between GSE used in Cairo Airport
19-Fig 4.7 Shows CAI routs Ouroba –Ring road79
21. Fig 5.2 Cairo Airport AQ1 Station95
20. Fig 5.1 Cairo Airport AQ1 Station95
22. Fig 5.3 inside Air Quality Monitoring Station96
23 Fig 5.4 Measured CO - 1hr97
24-Fig 5.5 CO Monthly Average97
25 Fig- 5.7 Monthly average So ₂ 98

26-Fig 5.6 1hr measured So ₂	98
27 Fig- 5.9 monthly average NO ₂	99
28 Fig- 5.8 1hr measured NO ₂	99
29-Fig 5.11 monthly averages O ₃	100
30 Fig 5.10 1hr measured O ₃	100

List OF Tables

1-Table 1.1 effects of air pollutants
2-Table 1.2 Typical ground support equipment35
3-Table 3.4 public transport services in Cairo international Airport 46
4-Table 3.1 GSE Emissions
5-Table 3.2 Aircraft LTO cycle emissions classified as Wide/narrow body
+ GSE emissions
6-Table 3.3 the emission factor for MOBILE runs for greater Cairo 63
7-Table 3.4 average hourly emissions emitted from the traffic in both
Routs
8-Table 3.5 Default emission factors for stationary combustion in the
energy industries64
9=Table 4.1 the highest Aircraft LTO Movement70
10- Table 4.2 Aircrafts with More Than 100 LTO Cycle Movements 71
11-Table 4.3 Aircrafts with less Than 100 LTO Cycle Movements 72
12-Table 4.4 Annual emissions emitted from both of aircraft LTO and its
related GSE75
13-Table 4.5 Annual movement on runway
14-Table 4.6 runways coordinate
15-Table 4.6 list of working ground service vehicle in Apron77
16-Table 4.7 Daily Land Side traffic emissions
17-Table 4.8 Annual Land Side traffic emissions
18-Table 4.9 Annual emissions emitted from secondary power generator
19- Table 4 10 Total Annual Emissions 82