PHYSICO-CHEMICAL PROPERTIES OF MILK PROTEINS MODIFIED BY TRANSGLUTAMINASE

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in Agricultural Science (Dairy Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

PHYSICO-CHEMICAL PROPERTIES OF MILK PROTEINS MODIFIED BY TRANSGLUTAMINASE

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005

This thesis for M.Sc. degree has been approved by: Dr. Abo El-Samh Mohamed Mehriz Prof. of Dairy Science and Technology, Faculty of Agriculture, Cairo University Dr. Zakaria Mohamed Rezk Hassan Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Abdallah Mohamed Gaafar Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hamdy Farag Haggag Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hamdy Farag Haggag Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University

PHYSICO-CHEMICAL PROPERTIES OF MILK PROTEINS MODIFIED BY TRANSGLUTAMINASE

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005

Under the supervision of:

Dr. Hamdy Farag Haggag

Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University(Principal Supervisor)

Dr. Abdallah Mohamed Gaafar

Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Gehan Ali Moustafa

Associate Prof. of Dairy Microbiology and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

5- SUMMARY

The utilization of dairy protein products as a food ingredients is dependent on their physico-chemical and functional properties. Casein, in particular, serve as food supplementation due to its high nutritive value and ease of preparation with good qualities as well as serving as functional additives contributing adhesive, emulsion, coagulation or viscoelastic properties to foods.

However, modification of casein to enhance or alter their functional properties may increase the area of their food application.

Transglutaminase is an enzyme that forms crosslinks between protein molecules. This cross linkage has unique effects on protein properties. Transglutaminase is now widely used in many food products as well as dairy products. Casein has been shown to be a very good substrate for transglutaminase. These days, it seems that the most advanced area of dairy product processing using transglutaminase is yoghurt manufacturing

There is very little published information on the effect of transglutaminase on the casein of buffalo's milk. So, the objective of the present study was to gain better understanding regard the effect of transglutaminase on acid casein physico-chemical properties and then trying to adapt the results obtained in the manufacture of yoghurt from buffalo's milk.

Buffalo's casein was separated from skimmilk by HCl at pH 4.6 and used for preparing casein solutions at different pH and different concentration. The samples of casein solutions were treated by microbial transglutaminase in the concentration of 0.5 unit/g protein at 40 °C for 60 min, then transglutaminase was inhibited by heating the samples at 80 °C, and after that samples were cooled to room temperature and used for the experimental studies. The obtained results could be summarized in the following:

- 1. The electrophoresis of casein and TGase treated casein showed an increase in the molecular weight of the bands of casein fractions on the gel.
- 2. The coagulation time of milk using acid or rennet showed an increase as a result of transglutaminase treatment.
- 3. The acid clotting time > rennet clotting time for TGase treated milk
- 4. The water holding capacity of casein treated by TGase was higher at temperatures of 5, 25, and 40 °c.
- 5. The oil binding capacity of casein treated by TGase showed a higher value compared with untreated casein at 5, 25, and 40 °c.
- 6. Ethanol stability of casein treated samples were better than the control casein.
- 7. Foaming capacity and stability were lower with casein treated samples than the control casein solution.
- 8. The emulsifier capacity and stability properties was improved in the case of casein treated samples.
- 9. The solubility of casein treated samples by TGase showed better values than the control casein solution.
- 10. The buffering capacity of casein solution treated with enzyme showed better quality than the control casein samples.
- 11. The rheological properties was improved as a result of treated casein by TGase.

For the manufacture of yoghurt, fresh buffaloes milk standardized to 5.5 % fat was divided to three batches. Buffaloes' milk was treated with the enzyme (0.5 unit/g milk proteins for 1 h at 40 °C) followed by heat treatment (80 °C / 1 min) for inactivation of the enzyme (Treatment 1). Another batch of milk was heated to 90 °C /10 min to inactivate the TGase inhibitor located in the milk serum, then cooled to 40 °C (Treatment 2). Milk was treated with the enzyme and followed by heat

treatment (80 °C / 1 min) for inactivation of the enzyme, and then the fermentation process was carried out with the addition of 1.5% starter culture and control treatment was prepared without enzyme.

The results obtained were summarized in the following:

- 1. Transglutaminase improved the viscosity of yoghurt which being Treatment 1 > Treatment 2 > Control.
- 2. Syneresis defects was reduced by using transglutaminase.
- 3. The curd strength was increased by using TGase enzyme.
- 4. The curd structure was improved and became compact with good distribution of protein and fat as seen with the electron microscope examination.
- 5. Using transglutaminase was a good processing step for manufacture high quality yoghurt.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VII
LIST OF DIAGRAMS	XII
LIST OF APPREVIATIVES	XIII
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1. Caseins	3
2.2. Protein modification	4
2.3. Transglutaminase and dairy foods application	6
2.4. Yoghurt and transglutaminase	22
3- MATERIALS AND METHODS	29
3.1. Materials	29
3.2. Methods	29
3.2.1. preparation of acid casein	29
3.2.2. Fractionation of protein by sodium dodecyl sulfate (SDS)	
polyacrylamide gel electrophoresis (PAGE)	30
3.2.3. Gelling time	31
3.2.4. Reneting time	31
3.2.5. Water holding capacity	32
3.2.6. Oil binding capacity	32
3.2.7. Ethanol stability	33
3.2.8. Foaming properties	33
3.2.9. Emulsifying properties	33
3.2.10. Solubility properties	35
3.2.11. Buffering capacity	35
3 2 12 Rheological properties	35

3.2.13. Manufacture of yoghurt	3
3.2.14. Yoghurt analysis	3
3.2.14.1. pH value	3
3.2.14.2. Titratable acidity	3
3.2.14.3. Apparent viscosity	3
3.2.14.4. Susceptibility to synersis	3
3.2.14.5. Hardness	3
3.2.14.6. Water holding capacity	3
3.2.14.7. Sensory evaluation	3
3.2.14.8. Scanning electron microscope	4
3.2.15. Statistical analysis	۷
4- RESULTS AND DISCUSSIONS	4
4.1. Cross-linking of casein by microbial transglutaminase	۷
4.2. Gelling time (using normal starter culture)	۷
4.3. Renniting clotting time (rennin)	4
4.4. Water holding capacity	4
4.5. Oil binding capacity	
4.6. Ethanol stability	:
4.7. Foaming properties	:
4.7.1. Effect of casein concentration	:
4.7.2. The effect of pH	:
4.7.3. The effect of both concentration and pH of casein as	
affected by TGase	:
4.8. Emulsifying properties	(
4.9. Solubility properties	8
4.9.1. Effect of pH	8
4.9.2. Effect of NaCl addition	8
4.9.3. Effect of CaCl ₂ addition	8
4.10. Buffering capacity	8

4.11. Enzymatic cross-linking of sodium caseinate by TGase	101
4.12. The rheological properties of different casein solution as	
affected by TGase enzyme at different pH values	102
4-12-1 Rheological properties at pH 5.0	103
4-12-2 Rheological properties at pH 6.6	114
4-12-3 Rheological behavior of casein solutions at pH 8.0	124
4.13. Manufacture of yoghurt	134
4.13.1 Changes of experimental yoghurts pH values	134
4.13.2 Changes of experimental yoghurts acidity values	134
4.13.3 Apparent viscosity of experimental yoghurts	136
4.13.4 Synersis of experimental yoghurts	137
4.13.5 Gel strength of experimental yoghurts	138
4.13.6 Water holding capacity of experimental yoghurts	139
4.13.7 Sensory evaluation of experimental yoghurts	140
4.13.8 Scanning electron micrographs	143
5- SUMMARY	145
6- REFERANCES	148
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page
1	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 4	43
2	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 5	43
3	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 6.0	44
4	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 7.0	44
5	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 8.0	45
6	Characteristics of bands for both unmodified and TGase	
	treated casein after the reaction at pH 9.0	45
7	Gelling time of transglutaminase treated milk	47
8	Renniting clotting time of transglutaminase treated milk	48
9	Water holding capacity (WHC) of transglutaminase	
	treated casein	50
10	Oil Binding capacity (OBC) of TGase treated casein	51
11	Ethanol stability of TGase treated buffalo's casein	53
12	The average of foam volume capacity and foam stability	
	of casein as affected by TGase at different casein	
	concentrations	56
13	The average of foam volume capacity and foam stability	
	of casein as affected by TGase at different pH values	57
14	The effect of the casein concentration on emulsifying	
	properties of TGase treated casein	68
15	The average of emulsifying activity index and	
	emulsifying stability of casein as affected by TGase at	
	different pH values	75

16	The effect of pH of casein on the solubility	
17	Solubility of casein as affected by NaCl	
18	Solubility of casein as affected by CaCl ₂	
19	Buffering capacity of 1.0 % solution of unmodified and	
	TGase treated casein	
20	Buffering capacity of 2.0 % solution of unmodified and	
	TGase treated casein	
21	Buffering capacity of 3.0 % solution of unmodified and	
	TGase treated casein	
22	Buffering capacity of 4.0 % solution of unmodified and	
	TGase treated casein	
23	Buffering capacity of 5.0 % solution of unmodified and	
	TGase treated casein	
24	Enzyme activity of TGase treated casein solution (3%)	
25	The relation between shear rate and shear stress of casein	
	solution at pH 5.0 as a function of casein concentration	
	and TGase treatment	
26	The dynamic viscosity of different casein solution at	
	different shear rates as affected by TGase enzyme at pH	
	5.0	
27	Rheological parameters of TGase untreated casein and	
	TGase treated casein at pH 5.0	
28	The relation between shear rate and shear stress of casein	
	solution at pH 6.6 as a function of casein concentration	
	and TGase treatment	
29	The dynamic viscosity of different casein solution at	
	different shear rates as affected by TGase enzyme at pH	
	6.6]
30	Rheological parameters of TGase untreated casein and	
	TGase treated casein at pH 6.6	
		1

31	The relation between shear rate and shear stress of casein	
	solution at pH 8.0 as a function of casein concentration	
	and TGase treatment	125
32	The dynamic viscosity of different casein solution at	
	different shear rates as affected by TGase enzyme at pH	
	8.0	129
33	Rheological parameters of TGase untreated casein and	
	TGase treated casein at pH 8.0	133
34	Changes of pH values of yoghurt samples with TGase	
	during 8 days of storage at 5 °C	135
35	Average of apparent viscosity of yoghurt samples with	
	TGase during 8 days of storage at 5 °C	136
36	Penetration depth of yoghurt samples with TGase during	
	8 days of storage at 5 °C	139
37	Water holding capacity of yoghurt samples with TGase	
	during 8 days of storage at 5 °C	140
38	Sensory evaluation of yoghurt made from buffalo milk	
	treated with TGase during storage at 5°C for 8	
	days	142

LIST OF FIGURES

Fig. No.	Title	P
1	SDS-Polyacrylamide gel electrophoresis patterns of unmodified and	
	TGase treated casein	
2	Gelling time of transglutaminase treated buffalo's milk	
3	Rennet clotting time of transglutaminase treated buffalo's milk	
4	Water holding capacity of TGase treated casein	
5	Oil binding capacity of TGase treated casein	
6	Ethanol stability of TGase treated buffalo's milk	
7	The effect of TGase on foam volume capacity of Na-caseinate at pH	
	6.0	
8	The effect of TGase on foam stability at pH 6.0	
9	The effect of TGase on foam volume capacity of Na-caseinate at pH	
	6.6	
10	The effect of TGase on foam stability at pH 6.6	
11	The effect of TGase on foam volume capacity of Na-caseinate at pH	
	7.0	
12	The effect of TGase on foam stability at pH 7.0	
13	The effect of TGase on foam volume capacity of Na-caseinate at pH	
1.4	8.0	
14	The effect of TGase on foam stability at pH 8.0	
15-1	Emulsifying activity index at different pH values and 0.5% casein	
15-2	Emulsifying activity index at different pH values and 1.0% casein	
13-2	solution	
15-3	Emulsifying activity index at different pH values and 1.5% casein	
10 0	solution	
15-4	Emulsifying activity index at different pH values and 2.0% casein	
	solution	

VIII

15-5	Emulsifying activity index at different pH values and 2.5% casein solution
15-6	Emulsifying activity index at different pH values and 3.0% casein solution
15-7	Emulsifying activity index at different pH values and 3.5% casein solution
15-8	Emulsifying activity index at different pH values and 4.0% casein solution
15-9	Emulsifying activity index at different pH values and 4.5% casein solution
15-10	Emulsifying activity index at different pH values and 5.0% casein solution
16-1	Emulsifying activity index at pH 4
16-2	Emulsifying activity index at pH 5
16-3	Emulsifying activity index at pH 6
16-4	Emulsifying activity index at pH 6.6
16-5	Emulsifying activity index at pH 7
16-6	Emulsifying activity index at pH 8
16-7	Emulsifying activity index at pH 9
17-1	Emulsifying stability of casein solutions at pH 4.0
17-2	Emulsifying stability of casein solutions at pH 5.0
17-3	Emulsifying stability of casein solutions at pH 6.0
17-4	Emulsifying stability of casein solutions at pH 6.6
17-5	Emulsifying stability of casein solutions at pH 7.0
17-6	Emulsifying stability of casein solutions at pH 8.0
17-7	Emulsifying stability of casein solutions at pH 9.0
18	Solubility profiles of TGase treated and untreated casein solution at
	pH 3to9

19	Effect of NaCl concentration on solubility of casein and TGase treated casein	86
20	Effect of CaCl ₂ concentration on solubility of unmodified and TGase	
	treated casein	87
21	Titration curve and corresponding buffering capacity of TGase	
	treated casein solution and control casein (1%)	90
22	Titration curve and corresponding buffering capacity of TGase	
	treated casein solution and control casein (2%)	92
23	Titration curve and corresponding buffering capacity of TGase	
	treated casein solution and control casein (3%)	94
24	Titration curve and corresponding buffering capacity of TGase	
	treated casein solution and control casein (4%)	96
25	Titration curve and corresponding buffering capacity of TGase	
	treated casein solution and control casein (5%)	98
26	Titration curve of different TGase treated casein solutions and control	
	casein	99
27	Enzyme activity of TGase treated casein solution (3%)	101
28-1	Relation between shear rate and shear stress of TGase untreated casein	
	and TGase treated casein at pH 5.0 (1% concentration)	105
28-2	Relation between shear rate and shear stress of TGase untreated casein	
	and TGase treated casein at pH 5.0 (2% concentration)	106
28-3	Relation between shear rate and shear stress of TGase untreated casein	
	and TGase treated casein at pH 5.0 (3% concentration)	106
28-4	Relation between shear rate and shear stress of TGase untreated casein	
	and TGase treated casein at pH 5.0 (4% concentration)	107
28-5	Relation between shear rate and shear stress of TGase untreated casein	
	and TGase treated casein at pH 5.0 (5% concentration)	107
29-1	Relation between dynamic viscosity and shear rate of TGase untreated	
	casein and TGase treated casein at pH 5.0 (1% concentration)	109
29-2		
	Relation between dynamic viscosity and shear rate of TGase untreated	109