Anti-Mullerian Hormone as A Prognostic Marker of Intracytoplasmic Sperm Injection Outcome in Patients with Endometriosis

Thesis Submitted for the Partial fulfillment Of Master Degree in Obstetrics and Gynaecology

By

Amro Rashed Noaman Othman

M.B. B.Ch, (2006), Faculty of Medicine - Ain Shams University Resident of obstetrics and gynaecology Imbaba general hospital

Under Supervision of

Professor / Mohammed Sayed Ali

Professor of Obstetrics and Gynaecology Faculty of Medicine - Ain Shams University

Doctor/ Hala Badr El-Din Ali Othman

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/Mohamed Abd-El Hameed Abd El-Hafeez

Lecture of Obstetrics and Gynaecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

ACKNOWLEDGMENT

Firstly, I would like to express my sincere gratitude to Prof. Dr. **Mohammed Sayed Ali** for the continuous support of this study, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing. I could not have imagined having a better advisor and mentor.

I would like to thank also Prof. Dr. Hala Badr El-Din Ali Othman for her insightful comments, guidance and encouragement.

Also I would like to thank Dr. Mohamed Abd-El Hameed Abd El-Hafeez. His guidance helped me in all the time of research and writing and for his support which was essential for this study.

My sincere thanks also go to ART unit, Ain Shams University team who gave access to the laboratory and research facilities, without their support it would not be possible to conduct this study.

To my family for their support

LIST OF CONTENTS

	Page no.
LIST OF ABBREVIATIONS	ii
LIST OF TABLES	V
LIST OF FIGURES	vi
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	••••
Chapter (1): ANTI-MULLERAN HORMONE	5
Chapter (2): ENDOMETRIOSIS	30
Chapter (3): OVARIAN RESERVE	61
PATIENTS AND METHODS	77
RESULTS	84
DISCUSSION	95
CONCLUSION AND RECOMMENDATION	101
REFERENCES	102
SUMMARY	131
ARARIC SUMMARY	

LIST OF ABBREVIATIONS

AFC Antral Follicle Count

AFS American Fertility Society

AMH Anti-Mulerian Hormone

AMHff AMH in follicular fluid

AMHR Anti-Mulerian Hormone Receptor

AMHs AMH in serum

ART Assisted Reproductive Techniques

BMI Body Mass Index

C group Control group

CA Cancer Antigen

CCCT Clomiphene Citrate Challenge Test

COS Controlled Ovarian Stimulation

E group Endometriotic group

E2 Estradiol

EFORT Exogenous FSH Ovarian Reserve Test

FSH Follicular Stimulating Hormone

GAST Gonadotrophin Agonist Test

GCT Granulosa Cell Tumour

GnRH Gonadotrophin Releasing Hormone

HCG Human Chorionic Gonadotopin

HRT Hormonal Replacement Therapy

ICSI Intra-Cytoplasmic Sperm Injection

IGF Insulin-like Growth Factor

IL Interleukin

IVF In-Vitro Fertilization

LH luteinizing Hormone

MIS Mulerian Inhibiting Substance

NGF Nerve Growth Factor

OHSS Ovarian Hyper-Stimulation Syndrome

PCO Poly-Cystic Ovary

PDGF Platelet Derived Growth Factor

PMDS Persistent Mullerian Duct Syndrome

POF Premature Ovarian Failure

SD Standard Deviation

TNF Tumour Necrosis Factor

LIST OF TABLES

Table(1): Potential roles of serum AMH in gynecology	15
Table (2) :Clinical characteristics for women in both control & endometriotic group	84
Table (3): ICSI characteristics for control group	85
Table (4): ICSI characteristics for endometriotic group	85
Table (5): Serum & follicular AMH levels for control group	89
Table (6): Serum & follicular AMH levels for endometriotic group	89
Table (7): The results of both AMHs and AMHff levels with biochemical pregnancy test in E group	93
Table (8): The results of both AMHs and AMHff levels with biochemical pregnancy test in C group	94

LIST OF FIGURES

Figure (1):Follicle dynamics in wild-type, heterozygous and AMH null mouse ovaries	7
Figure (2): Immunohistochemical localisation of AMH in bouin-fixed ovaries of adult mice	8
Figure (3):Signaling of AMH	10
Figure (4):Proposed establishement of peritoneal endometriotic implants	34
Figure (5):The American Society for Reproductive Medicine revised classification of endometriosis	48
Figure (6):Active endometriosis on the uterosacral ligaments	51
Figure (7):Severe endometriosis with both ovaries adherent	51
Figure (8):Drainage of left ovarian endometrioma	52
Figure (9):Visual representation of nerve fibers present in the endometrium	60
Figure (10):Fertilization rate (%) in both control & endometriotic group	86
Figure (11):Pregnancy rate in both control & endometriotic group	87
Figure (12):Serum and FF AMH in both Endometriosis and control groups	88
Figure (13): Correlation between AMHs levels with AMHff levels in endometriotic group	90

Figure (14):Correlation between AMHs levels with AMHff levels in	9(
control group	
Figure (15):Correlation between AMHs & AMHff levels and total no. of follicles in endometriotic group	91
Figure (16): Correlation between AMHs & AMHff levels and total no. of follicles in control group	91
Figure (17): Correlation between AMHs & AMHff levels and embryos available for transfer in endometriotic group	92
Figure (18): Correlation between AMHs & AMHff levels and embryos	92

Introduction

ne of the important issues for in vitro fertilization-embryo transfer (IVF-ET) is to decrease the occurrence of multiple pregnancies without decreasing the success rate. This implies the need to obtain oocytes that are of a good quality for fertilization and implantation (**Hasegawa et al, 2003**).

Endometriosis is a disease defined by the presence of endometrial glands and stroma located outside the uterine cavity. These ectopic implants can be found throughout the pelvis, on and within the ovaries, abutting the uterine ligaments, occupying the rectovaginal septum, invading the intestinal serosa, and along the parietal peritoneum. Endometrial implantation at distant sites such as the pleura, lung, within surgical scars, and along the diaphragm also has been reported (**Boyle and Torrealday**, 2008).

The main clinical symptoms of endometriosis are infertility, dysmenorrhoea, dyspareunia, dyschezia and chronic pelvic pain (defined as pain of greater than 6- month duration and not cyclical in nature) (Treloar et al., 2005).

Although many hypotheses exist to explain the condition between endometriosis and infertility, the precise mechanisms by which endometriosis leads to infertility remain unclear. While more extensive endometriosis may simply impair fertility by mechanical means, hypotheses concerning subtler forms of endometriosis have suggested that infertility is impaired due to disruption of ovum transport,