ASSESSMENT OF NANOTECHNOLOGY FOR PREPARATION OF SOME NATURAL PIGMENTS AS FOOD ADDAITIVES

By

RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sci. (Food Technology), Cairo University (2003)M.Sc. Agric. Sci. (Food science), Ain Shams University (2010)

A thesis submitted in partial fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

ASSESSMENT OF NANOTECHNOLOGY FOR PREPARATION OF SOME NATURAL PIGMENTS AS FOOD ADDAITIVES

By

RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sci. (Food Technology), Cairo University (2003)M.Sc. Agric. Sci. (Food science), Ain Shams University (2010)

This thesis for Ph.D. degree has been approved by:

Date of Examination: / /

Dr. Taiseer Mahmoud Abu-Bakr				
Prof. Emeritus of Food Science Agriculture, Alexandria University	and	Technology,	Faculty	O
Dr. Yehia Abd El-Razik Hekal				
Prof. Emeritus of Food Science Agriculture, Ain Shams University	and	Technology,	Faculty	O
Dr. Nagwa Mousa Hassen Rasmy				
Prof. Emeritus of Food Science Agriculture, Ain Shams University	and	Technology,	Faculty	O
Dr. Ahmed Youssef Gibriel				
Prof. Emeritus of Food Science Agriculture, Ain Shams University	and	Technology,	Faculty	O

ASSESSMENT OF NANOTECHNOLOGY FOR PREPARATION OF SOME NATURAL PIGMENTS AS FOOD ADDAITIVES

By

RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sci. (Food Technology), Cairo University (2003)M.Sc. Agric. Sci. (Food science), Ain Shams University (2010)

Under the supervision of

Dr. Ahmed Youssef Gibriel

Prof. Emeritus of Food Science and Technology, Dept. of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nagwa Mousa Hassen Rasmy

Prof. Emeritus of Food Science and Technology, Dept. of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Ferial Mohamed Mohamed Abu-Salem

Researcher Prof. Emeritus of Food Science and Technology, Dept. of Food Science & Technology, National Research Center

ABSTRACT

Rasha Kamal Mohamed Abd El-Nabi: Assessment of Nanotechnology for Preparation of some Natural Pigments as Food Additives. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017

Anthocyanins attracted attention as a potential source of natural colorants and as antioxidants. The extraction procedure is of great importance for the quality of natural colorant. In the present study, different extraction media such as, ethanol (0 - 80 %), acidified water (1% HCl) with ethanol (0 - 80 %), acetic acid solution (1 - 2 %) and acidified (0.5 - 2 % lactic acid) 80 % ethanol were used to extract anthocyanins from Hibiscus (A_H) and black mulberry (A_M). The antioxidant capacity of different extracts were also evaluated using DPPH, ABTS and FRAP assays. Among different tested media, acidified (2 % lactic) 80 % ethanol, acidified (1%HCl) 50 % ethanol and 2 % acetic acid solution significantly exhibited higher anthocyanin content from hibiscus (being 725.91, 685.78 and 634.90 mg/100g, respectively). On other side, the maximum content of anthocyanins extracted from mulberry was obtained by using 1 % HCl acidified water (1282.18 mg / 100 g). With regard to antioxidant activity, both the acidified (2 % lactic acid) 80 % ethanol and acidified (1%HCl) 50 % ethanol of hibiscus extracts and 1% HCl acidified water of mulberry showed strong antioxidant activity.

Color characteristics (L*, a*, b*, Hue and Chroma) of hibiscus and black mulberry extracts, which exhibited the highest anthocyanin content, were measured using a Hunter coloimeter. Overall, the color of hibiscus extracts was dark (low L* value) but with low intensity (less vivid). On the other hand, the color of mulberry extracts was light (high L* value) but with high intensity (high vivid).

A strong correlation was observed between the anthocyanin levels and antioxidant capacity values of different hibiscus and mulberry extracts (R²=0.98, 0.984 and 0.90) measured by DPPH, ABTS and FRAP assays, respectively

Synthesis and characterization of chitosan nanoparticles (CS-NP)

and evaluation of their loading capacity with natural anthocyanins from hibiscus and black mulberry to produce anthocyanin nanocomposities (A_H -NC and A_M -NC) was carried out. Characterization with TEM showed that CS-NP were successfully synthesized with diameters ranged from 40 to 52 nm and UV–Vis spectrophotometry confirmed the successful loading of anthocyanins into chitosan nanoparticles (CS-NP). Zeta potential results reflect the greater stability of A_H -NC and A_M -NC than CS-NP.

Results showed that A_H -NC had significantly higher antioxidant activity values than that of A_H . On contrary, A_M -NC showed less AOA values than that of A_M . Also, color characterization indicates that both A_H -NC and A_M -NC achieved good color parameters than A_H and A_M .

Kinetics and thermodynamics of degradation of A_H , A_M versus A_H -NC and A_M -NC was studied .Results showed the enhancement of the thermal, pH, and light stability of A_H -NC and A_M -NC than A_H and A_M as a result of loading the pigment on CS-NP. By comparing the half-life values of different anthocyanins samples, it could be concluded that, at 25°C, A_H and A_M extracts were ≈ 57.55 and 21.52 times less susceptible to degradation than they were at 100° ($t_{1/2}$ 25° C / $t_{1/2}$ 100° C). On other hand at 25°C the half life values of A_H -NC and A_M -NC were ≈ 65.20 and 21.27 times less susceptible to degradation as at 100° C, respectively.

The potential application of anthocyanins as natural colorants in gelatin gum and ice cream was also studied. Results showed that the color parameters and sensory evaluation of gelatin gum and ice cream samples colored with anthocyanin nanocomposites A_H -NC and A_M -NC were more stable and acceptable than those of free anthocyanin A_H and A_M .

Key words: Anthocyanins, *Hibiscus sabdarriffa L.*, *Morus nigra L.*, extraction, antioxidant activity, color parameters, chitosan nanoparticles, nanofood , food nanotechnology, nanocomposite, temperature, light, pH stability, kinetic degradation.

ACKNOWLEDGEMENT

All praises and thanks are due to **ALLAH**, who blessed me with kind professors and colleagues, and gave me the support to complete this thesis.

I am grateful and indebted to **Dr. Ahmed Gabriel**, Professor of Food Science and Technology, Faculty of Agriculture, Ain-Shams University, for his kind supervision, willing cooperation, keen guidance and continuous encouragement throughout this investigation.

I would like to express my sincere appreciation to **Dr. Nagwa Mousa Hassen Rasmy**, Professor of Food Science and Technology, Faculty of Agriculture, Ain-Shams University, for her guidance, encouragement and patience with me throughout my Ph.D. study, editing this thesis and it is my great honor to work under her supervision.

I would like to express my deep gratitude to **Dr. Ferial Mohamed Mohamed Abu-Salem,** Professor of Food Science and Technology, National Research Center for planning of this study, engaging me in new ideas, her valuable criticism, kind direct supervision, encouraging my research and for allowing me to grow as a research scientist.

I am extremely grateful to **Dr. Taher Ahmed Salah E-IDin**, Associate Professor of Nanotechnology, in Agriculture Research Center and Director of Mostafa Elsayed Nanotechnology Research Centre, British University in Egypt for encouraging and giving all the facilities that made this work possible, I appreciate what I have learned from him, not only the broad knowledge, sharp scientific instinct and creative ideas, but also the optimistic and confident personality.

Also, my sincere thanks go to **Dr. Esmat Anwar kottb**, Professor of Food Science and Technology, National Research Center, who gave me the confidence and guidance to explore my research.

Thanks due to all stuff members of Food Technology lab, National Research Centre and all stuff members of Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center for their assistance and support for using the various laboratory equipments.

In this respect I cannot forget to thank my family for their patience, moral support and giving me chances to complete this work.

CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	X
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Nanotechnology	6
2.1.1. Food nanotechnology and nanofoods	6
2.1.2. Nanoparticles	8
2.1.3. Nanocomposites	9
2.1.4. Food nanomaterials	10
2.1.4.1. Chitosan	11
2.1.4.2. Other kinds of polysaccharids	12
2.1.4. 3. Preparation methods of nanomaterials	15
2.1.5. Preparation of chitosan nanoparticles	16
2.1.6. Characterization techniques of nanoparticles	17
2.1.7. Application of nanotechnology in food	20
2.2. Anthocyanin as natural food colorant	24
2.2.1. Anthocyanins chemistry	27
2.2.2. Natural sources of anthocyanins	29
2.3. Extraction of anthocyanins	32
2.4. Antioxidant activity of anthocyanins extracts	36
2.5. Factors affecting the stability of anthocyanins	38
2.6. Anthocynin stabilization mechanisms	44
2.7. Application of anthocyanin as a food colorant	48
3. MATERIALS AND METHODS	51
3.1. Materials	51
3.1.1- Plant materials	51
3.1.2 Chemicals	51
3.1.3. Gelatin gum ingredients	51

3.1.4. Ice cream mix formula	51
3.2 Methods	52
3.2.1. Technological methods	52
3.2.1.1. Extraction of anthocyanin from hibiscus and black	52
mulberry	
3.2.1.2. Preparation of chitosan nanoparticles.	53
3.2.1.3. Loading of anthocyanin on chitosan nanoparticles	53
3.2.1.4. Stability of natural anthocyanin and anthocyanin	53
nanocomposites	
3.2.1.4.1. Thermal stability	54
3.2.1.4.2. pH stability	54
3.2.1.4.3. Light stability	54
3.2.1.5. Application of natural and nanocomposites	55
anthocyanin in some food products	
3.2.1.5.1. Manufacture of gelatin gum	55
3.2.1.5.2. Manufacture of ice cream	55
3.2.2. Analytical methods	56
3.2.2.1. Proximate composition and physicochemical analysis of	56
hibiscus and black mulberry	
3.2.2.2. Ascorbic acid content	56
3.2.2.3. Total phenolic content	56
3.2.2.4.Total anthocyanin content	57
3.2.2.5. Antioxidant capacity of anthocyanin extracts	57
3.2.2.5.1. DPPH radical scavenging activity of extracts	58
3.2.2.5.2. ABTS radical scavenging activity	58
3.2.2.5.3. Ferric reducing activity power (FRAP) assay:	59
3.2.2.6. Structural characterization of chitosan nanoparticles and	59
anthocyanin nanocomposites	
3.2.2.6.1. Fourier Transform Infrared Spectroscopy (FT-IR).	59
3.2.2.6.2. UV–VIS spectroscopy	59
3.2.2.6.3. X-ray diffraction (XRD) analysis	60

3.2.2.7. Morphological characterization of chitosan nanoparticles	60
and anthocyanin nanocomposites	
3.2.2.7.1. Transmission electron microscopy (TEM)	60
3.2.2.7.2. Particle size, zeta potential and polydispersity	60
3.2.2.8. Kinetics analysis	60
3.2.2.9. Color measurement	62
3.2.2.10. Sensory analysis	62
3.2.2.11. Statistical Analysis	63
4. RESULTS AND DISCUSSION	64
4.1. Proximate composition and physicochemical analysis of	64
hibiscus and black mulberry	
4.2. Extraction and Evaluation of anthocyanin pigments from	68
hibiscus and black mulberry	
4.2.1. Effect of extraction media on anthocyanin content and	68
antioxidant activities of hibiscus and black mulberry extracts.	
4.2.1.1. Extraction of anthocyanin with ethanol solutions	69
4.2.1.2. Extraction of anthocyanin with acidified water (1 % HCl)	73
in ethanol	
4.2.1.3. Extraction of anthocyanin with acetic acid solutions	78
4.2.1.4. Extraction of anthocyanin with 80 % ethanol acidified	80
with lactic acid	
4.2.1. 5. The efficiency of different extraction media	82
4.3. Color characteristics of different anthocyanins extracts	86
from hibiscus and black mulberry	
4.4. Correlation between anthocyanin content and antioxidant	90
activity	
4.5. Synthesis and characterization of chitosan nanoparticles	91
(CS-NP) and anthocyanin nanocomposite (A_H -NC and A_M -NC)	
4.5.1. Synthesis of chitosan nanoparticles (CS-NP) and	92
anthocyanin nanocomposites (A _H -NC and A _M -NC)	
4.5.2. Characterization of CS-NP, A _H -NC and A _M -NC	93

4.5.2.1. Transmission electron microscope (TEM)	93
4.5.2.2. Particle size, polydispersity and zeta potential	94
4.5.2.3. Fourier transforms infrared (FT-IR) measurements	98
4.5.2.4. UV–Vis Spectroscopy	101
4.5.2.5. X-ray diffraction (XRD) measurements	103
4.5.2.6. Antioxidant activity of anthocyanin nanocomposites	104
4.5.2.7. Color parameters of anthocyanin nanocomposites	105
4.6. Stability of natural free anthocyanins from hibiscus and	107
black mulberry $\mathbf{A}_{H,}$ \mathbf{A}_{M} in comparison with their	
nanocomposites	
4.6.1. Effect of temperature and thermodynamic studies	108
4.6.2. Effect of pH	118
4.6.3. Effect of light	125
4.7. Application of anthocyanins pigments from hibiscus and	129
black mulberry and their nanocomposites in some	
food	
4.7.1. Gelatin gum	130
4.7.1.1. Color stability of gelatin gum	130
4.7.1.2. Sensory evaluation of gelatin gum	136
4.7.2. Ice cream	138
4.7.2.1. Color stability of ice cream	139
4.7.2.2. Sensory evaluation of ice cream	145
5. SUMMARY AND CONCLUSION	149
6. REFERENCES	155
7. ARABIC SUMMARY	

LIST OF TABLES

No	TITLE	Page
1	The most common color found in food	26
2	Structures of common anthocyanidin	28
3	Total anthocyanin content in selected common fruits and	30
	vegetables	
4	Proximate composition of dried flower hibiscus and	65
	black mulberry as dry basis	
5	Physiochemical properties of hibiscus and mulberry	66
6	Anthocyanin contents and antioxidant activities of	70
	hibiscus extracted with different ethanol concentrations	
7	Anthocyanin contents and antioxidant activities of black	72
	•	
	mulberry extracted with different ethanol concentrations	
8	Anthocyanin contents and antioxidant activities of	74
	hibiscus extracted with acidified ethanol	
9	Anthocyanin contents and antioxidant activities of black	77
	mulberry extracted with acidified ethanol	
10	Anthocyanin contents and antioxidant activities of	78
	hibiscus extracted with different acetic acid	
	concentration	
11	Anthocyanin contents and antioxidant activities of black	79
	mulberry extracted with different acetic acid	
	concentration	
12	Anthocyanin contents and antioxidant activities of	80
	hibiscus extracted with 80 % ethanol acidified with lactic	
	acid	

13	Anthocyanin contents and antioxidant activities of black mulberry extracted with 80 % ethanol acidified with	81
14	lactic acid Anthocyanin contents and antioxidant activity of the best	82
15	extracting media from hibiscus Anthocyanin contents and antioxidant activity of the best	83
15	extracting media from black mulberry	03
16	Color characteristics of different anthocyanins extracts from hibiscus	87
17	Color characteristics of different anthocyanins extracts from mulberry	88
18	Correlation coefficient of antioxidant activity and anthocyanin from hibiscus	90
19	Correlation coefficient of antioxidant activity and anthocyanin from mulberry	91
20	Particle size, polyispersity and zeta potential measured with Zetasizer for CS-NP, A_H -NC and A_M -NC	94
21	Vibration frequencies of functional groups for CS-NP, A_H -NC and A_M -NC	99
22	Antioxidant activity of anthocyanin from hibiscus and black mulberry (AH and A_M), their nanocomposites (A_M	105
23	–NC, A _H -NC) and chitosan nanoparticles CS-NP Color parameters of anthocyanin from hibiscus and black mulberry (AH and A _M) and their nanocomposites (A _M –	106
24	NC, A_H -NC) Kinetics degradation parameters of anthocyanins (A_H and A_M) and their nanocomposites (A_H -NC and A_M -NC) at different temperatures	112
25	Thermodynamic degradation parameters of Anthocyanins (A_H and A_M) and their composites (A_H -NC and A_M -NC) at different temperatures	117

26	Kinetics degradation parameters of anthocyanins (A _H and	121
	A_{M}) and their nanocomposites (A _H -NC and A _M -NC) at	
	different pH values	105
27	Degradation kinetics parameters of Anthocyanins (A _H	127
	and A_M) and their composites (A_H -NC and A_M -NC) at	
	dark and light	
28	Color parameters of gelatin gum prepared with hibiscus	131
	anthocyanins (A _H) during storage at room temperature.	
29	Color parameters of gelatin gum prepared with	132
	anthocyanins nanocomposite (A _H -NC) during storage at	
	room temperature	
30	Color parameters of gelatin gum prepared with black	134
	mulberry anthocyanins (A _M) during storage at room	
31	temperature	135
31	Color parameters of gelatin gum prepared with black	133
	mulberry anthocyanins nanocomposites (A _M -NC) during	
32	storage at room temperature Sensory evaluation of gelatin gum contained anthocyanin	137
	from hibiscus (A_H) and its nanocomposites (A_H -NC)	137
22	Sensory evaluation of gelatin gum contained anthocyanin	138
33	from mulberry (A_M) and its nanocomposites (A_M-NC)	138
	Color parameters of Ice cream prepared with hibiscus	141
34		141
	extract (A _H) during storage at – 20 °C	
35	Color parameters of ice cream prepared with	142
	anthocyanins nanocomposite (A _H -NC) during storage at -	
	20 °C	
36	Color parameters of ice cream prepared with black	143
	mulberry extract (A _M) during storage at −20 °C	

144
146
147

LIST OF FIGURES

No	TITLE	Page
1	Structure of chitosan	11
2	Top down and bottom up approaches	16
3	Potential applications of nanotechnology in the food and	20
	food-packaging industries	
4	Structures of common anthocyanidin	28
5	Predominant anthoc vanin structural forms present at different pH level	29
6	Anthocyanins chemical forms depending on pH and	40
	degradation reaction for anthocyanins	
7	Effect of the best extracting media on anthocyanin yield	83
	from hibiscus	
8	Effect of the best extracting media on anthocyanin yield	84
	from mulberry	
9	Effect of the best extracting media on antioxidant activity	85
	from hibiscus	
10	Effect of the best extracting media on antioxidant activity	86
11	from black mulberry The appearances of chitosan nanoparticles using	93
	Transmission Electron Microscope	
12	Particle size (A) and zeta potential distribution (B) of chitosan nanoparticles.	95
13	Particle size (A) and zeta potential distribution (B) of	96
14	A _H -NC. Particle size (A) and zeta potential distribution (B) of A_{M} -NC.	97