

Recent Updates: Invasive and Non-Invasive Cardiac Output Monitoring in Critically Ill Septic Patients

Essay

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Walaa Ibraheam Ayoub

M.B., B.Ch - Ain Shams University

Supervised by

Prof. Dr. Mohamed Sidky Mahmoud

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Hany Victor Zaki

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Rania Hassan Abdel Hafiez

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Abstract

Background: Derangements in the circulation are a common feature of sepsis, trauma, major surgery and other critical illnesses. Detailed evaluation of the circulation is therefore is essential aspect of the clinical management of such patients. Thus the use of cardiac output monitoring technology is increasingly important in evaluating those patients. Sepsis occurs in 1-2% of all hospitalizations and accounts for as much as 25% of ICU bed utilization. Due to it rarely being reported as a primary diagnosis the incidence, mortality, and morbidity rates of sepsis are likely underestimated and It is the second-leading cause of death in non-coronary intensive care unit (ICU) patients, and the tenth-most-common cause of death overall

Aims: The aim of the study is to provide a systemic update of the currently available and most commonly used cardiac output monitoring devices and their integration in management of critically ill septic patients.

Conclusion: Derangements in the circulation are a common feature of sepsis, trauma, major surgery and other critical illnesses. One of the most important thing which affect outcome of the patient with sepsis is clinical monitoring with frequent reassessments. Patient monitoring in severe sepsis is implemented during resuscitation and should not delay initiation of resuscitation; however, hemodynamic monitoring provides for appropriate goals for directed therapy and should completed as soon as is feasibly possible.

Keywords: Recent Updates, Invasive and Non-Invasive, Cardiac Output, Ill Patients

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards Prof. Dr. Mohamed Sidky Mahmoud, Professor of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University for his continuous encouragement, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I would like to express my deepest appreciation, respect and thanks to Dr. Hany Victor Zaki, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for his continuous guide in all aspects of life beside his great science, knowledge and information.

I would like to express my deepest appreciation, respect and thanks to Dr. Rania Hassan Abdel Hafiez, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for her continuous guide in all aspects of life beside her great science, knowledge and information.

Last but not least, sincere gratitude to *My Family* for their continuous encouragement and spiritual support.

Contents

Subjects	Page
List of abbreviations	11
List of figures	
List of tables	
• Introduction	1
Aim of the Work	3
Chapter (1): Physiology of Cardiac Output	4
• Chapter (2): Septicemia and Septic Shock in ICU	
Patients	48
• Chapter (3): Invasive and Non-invasive Cardiac	
Output Monitoring	83
• Chapter (4): Integration of Cardiac Output	
Monitoring in Management of Seps	is127
• Summary	140
• References	142
Arabic Summary	

List of Abbreviations

AdRs : Adrenoreceptors

ALI : Acute lung injury

ANP : Atrial natriuretic protein

ARDS : Acute respiratory distress syndrome

AT1 : Angiotensin 1

AT2 : Angiotensin 2

ATP : Adenosine triphosphate

BNP : B-type natriuretic peptide

Ca²⁺ : Calcium

CABG : Coronary artery bypass grafting

Cl⁻ : Chloride

CO : Cardiac output

CORTICUS : Corticosteroid Therapy of Septic Shock

CPB : Cardio-pulmonary bypass

CVP : Central venous pressure

ECC : Excitation-contraction coupling

EF :Ejection fraction

EVLW : Extra vascular lung water

List of Abbreviations

ESICM : European Society of Intensive Care Medicine

GPCRs : G-proteins coupled receptors

 \mathbf{H}_2 : Histamine 2

HCN : Hyperpolarisation-activated cyclic

nucleotide-gated

iCa₂+ : Intracellular Ca²⁺

ICU : Intensive Care Unit

K+ : Potassium

LiCl : Lithium chloride

LiD CO : Lithium dilution technique cardiac output

LV : Left ventricular

MAP : Mean arterial pressure

MRSA : Methicillin-Resistant Staphylococcus Aureus

Na+ : Sodium

NIPPV : Noninvasive positive pressure ventilation

ODM : Oesophageal Doppler monitoring

PAC : Pulmonary artery catheter

PAOP : Pulmonary artery occlusion pressure

PARs : Protease-activated receptors

PiCCO : Pulse Contour Continuous Cardiac Output

List of Abbreviations

PPIs : Proton pump inhibitors

PPV : Arterial pulse pressure

PRAM : Pressure recording analytical method

PSA : Pulsatile systolic area

qSOFA : Quick SOFA

RV : Right ventricle

RyRs : Ryanodine receptors

SAFE : Saline versus Albumin Fluid Evaluation

SAN : Sainoatrial node

SERCA : Sarcoplasmic/ endoplasmic reticulum Ca₂+-ATPase

SIRS : Systemic inflammatory response syndrome

SOFA : Sequential organ failure assessment

SR : Sarcoplasmic reticulum

SSC : Survival sepsis campaign

SV : Stroke volume

SvO₂: Venous oxygen saturation

TnC : Troponin C

TOE : Trans-esophageal echocardiography

VET : Ventricular ejection time

List of Figures

No.	Figure	Page
1	Illustration demonstrates the principle of determination of cardiac output according to the Fick's formula.	6
2	General scheme for a G protein – coupled receptor consisting of receptor, the heterotrimeric G protein, and the effector unit.	15
3	The sarcolemma that envelops cardiomyocytes becomes highly specialized to form the intercalated disks where ends of neighboring cells are in contact. The intercalated disks consist of gap junctions and spot and sheet desmosomes.	24
4	Phases of cellular action potentials and major associated currents in ventricular myocytes.	28
5	Diagram depicts the components of cardiac excitation-contraction coupling. Calcium pools are noted in bold letters.	43
6	Pathophysiology of sepsis.	58
7	Recent guidelines recommendation of fluid resuscitation	69
8	Sepsis management algorithm.	82
9	Overview of cardiac output monitoring techniques.	88

List of Figures

No.	Figure	Page
10	ODM device.	93
11	Summary of velocity-time graph.	94
12	Waveforms of esophageal Doppler monitoring.	97
13	Trans-esophageal ECHO.	99
14	Partial CO2 rebrething device.	101
15	NICO2 monitor.	102
16	Sequence of re-breathing and stabilization while using NICO2.	104
17	Windkessel model curve	111
18	PICCO device.	112
19	LIDCO device.	116

List of Tables

No.	Table	Page
1	Action of hormones on cardiac function.	20
2	SOFA score.	51
3	Diagnostic criteria for sepsis infection.	56
4	Factors affecting selection of cardiac output monitoring devices.	87

Introduction

Derangements in the circulation is a common feature of sepsis, trauma, major surgery and other critical illnesses. Detailed evaluation of the circulation is therefore essential aspect of the clinical management of such patients. Thus the use of cardiac output monitoring technology is increasingly important in evaluating those patients. Understanding of the physiological principles applied by such technology is essential for safe and effective use in clinical practice (*Jhanji et al.*, 2005).

Sepsis causes millions of deaths globally each year and is the most common cause of death in people who have been hospitalized (*Tracey et al., 2014*). The worldwide incidence of sepsis is estimated to be 18 million cases per year. In the United States sepsis affects approximately 3 in 1,000 people, and severe sepsis contributes to more than 200,000 deaths per year (*Munford et al., 2011*).

Sepsis occurs in 1-2% of all hospitalizations and accounts for as much as 25% of ICU bed utilization. Due to it rarely being reported as a primary diagnosis the incidence, mortality, and morbidity rates of sepsis are likely underestimated and It is the second-leading cause of death in non-coronary intensive care unit (ICU) patients,

and the tenth-most-common cause of death overall (Martin et al., 2003).

Cardiac output monitoring in critically ill patients is becoming a standard practice in order to ensure tissue oxygenation and has traditionally accomplished using the pulmonary artery catheter (PAC) (Connors et al., 1996).

Recently, the value of PAC has been questioned with some suggestion that its use might not only be unnecessary but also potentially harmful. This notion, together with the availability of new less invasive cardiac output measuring devices, has markedly decreased the widespread use of the PAC (Harvey et al., 2016).

Some of these less invasive devices track stroke volume (SV) continuously and provide dynamic indices of fluids responsiveness, others assessment of volumetric preload variables and some also provide continuous measurement of central venous saturation via the use of proprietary catheters that are attached to the same monitor. All these variables, together with the cardiac output, may result in improvement of hemodynamic management of the Therefore, ill critically patient. the concept hemodynamic optimization is increasingly recognized as a cornerstone in the management of critically ill patients (Lees et al., 2009).

Aim of the Work

The aim of the study is to provide a systemic update of the currently available and most commonly used cardiac output monitoring devices and their integration in management of critically ill septic patients.

Physiology of Cardiac Output

Cardiac Work:

The work of the heart can be divided into external and internal work. External work is expended to eject blood under pressure, whereas internal work is expended within the ventricle to change the shape of the heart and to prepare it for ejection. Internal work contributes to inefficiency in the performance of the heart. External work, or stroke work, is a product of the stroke volume (SV) and pressure (P) developed during ejection of the SV

Stroke work = $SV \times P$ or $(LVEDV - LVESV) \times P$ (*Katz*, 2011)

The external work and internal work of the ventricle both consume O₂. The clinical significance of internal work is illustrated in the case of a poorly drained LV during cardiopulmonary bypass. Although external work is provided by the roller pump during bypass, myocardial ischemia can still occur because poor drainage of the LV creates tension on the left ventricular wall and increases internal work. The efficiency of cardiac contraction is estimated by the following formula

Cardiac efficiency = External work/Energy equivalent of O_2 consumption

(LeWinter and Osol, 2011).