الاختلافات المرضية و الفسيولوجية و الجزيئية بين عزلات الفطر الترناريا سولاني مسبب مرض اللفحة المبكرة على الطماطم

رسالة مقدمة من

ميشيل حنا فرج عبد السيد بكالوريوس العلوم الزراعية . جامعة أسيوط (1988) ماجستير أمراض نبات – جامعة القاهرة (2000)

للحصول على درجة الدكتوراه

فى العلوم الزراعية (أمراض النبات) قسم أمراض النبات . كلية الزراعة جامعة القاهرة

2006 / 6 / 6

الاختلافات المرضية و الفسيولوجية و الجزيئية بين عزلات الفطر الترناريا سولاني مسبب مرض اللفحة المبكرة على

الطماطم

رسالة مقدمة من ميشيل حنا فرج عبد السيد ميشيل حنا فرج عبد السيد بكالوريوس العلوم الزراعية . جامعة أسيوط (1988) ماجستير أمراض نبات – جامعة القاهرة (2000)

لجنة الفحص

ا.د.خيرى عبد المقصود عبادة أستاذ أمراض النبات كلية الزراعة – جامعة القاهرة	د.محمد إبراهيم الخليلي بركات أستاذ أمراض النبات ووكيل الكلية الزراعة – جامعة الفيوم
•••••	••••••
د. أحمد محمد عبد القادر عاشور أستاذ(مساعد) أمراض النبات كلية الزراعة – جامعة القاهرة	أ.د. موريس صبري ميخائيل أستاذ و رئيس قسم أمراض النبات كلية الزراعة – جامعة القاهرة

تحريراً في 6 /6 / 2006م

PATHOLOGICAL, PHYSIOLOGICAL, AND MOLECULAR VARIATIONS AMONG ISOLATES OF Alternaria solani THE CAUSAL OF TOMATO EARLY

BLIGHT DISEASE

BY

MICHAEL HANNA FARAG ABDEL-SAYED

B.Sc. (Agirc.), Assiut University (1988) M.Sc. (Plant Pathol.), Cairo University (2000)

THESIS Submitted in Partial Fulfillment of the Requirement for the Degree of

Doctor of Philosophy IN PLANT PATHOLOGY

Plant Pathology Department
Faculty of Agriculture
Cairo University

6 / 6 / 2006

Approval Sheet

PATHOLOGICAL, PHYSIOLOGICAL, and MOLECULAR VARIATIONS AMONG ISOLATES OF Alternaria

solani THE CAUSAL OF TOMATO EARLY BLIGHT DISEASE

\mathbf{BY}

MICHAEL HANNA FARAG ABDEL-SAYED

B.Sc. (Agirc.), Assiut University (1988) M.Sc. (Plant Dis.), Cairo University (2000

Degree: Ph.D.. of Plant Pathology

Approved by:

Prof. Dr. Mohamed Ibrahim El-	Khaleely Barakat
Prof. Dr. Khaairy AbdEl-Makso	oud Abada
Prof. Dr. Maurice Sabry Mikh	ail
Dr. Ahmed Abdel Kader Asho	our
Date: 6 / 6 /2006	Committe in Charge

ACKNOWLEDGEMENTS

Firstly and lastly all praise is to my **God**, without whose mercy and guidance this work have been neither started nor completed.

I would like to offer sincere thanks and gratitude for Professor Dr. Maurice Sabry Mikhail, Professor and Head of the Plant Pathology Department, Faculty of Agriculture Cairo University for suggesting the theme of this study and for the help and guidance he has given during his supervision of this work

Deep thanks are also due to Professor Dr. Ahmed M. A. Ashour, Professor of Plant Pathology, Faculty of Agriculture Cairo University for his supervision, advice, valuable help encouragements and guidance throughout this study.

Also, great thanks are offered Prof. Dr. Soad T. A. Haleem, Professor of Plant Pathology, Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center for her supervision and sincere help advice throughout this study.

I would like to heartily thank all my colleagues in the Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center for their cooperation and facilities offered which made this investigation possible.

CNTENTES

INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Globally distribution of tomato early blight disease	4
2. The causal organism	5
3. Variation among A. solani isolates	6
4. Physiological studies	7
4.1. Factors affecting <i>in vitro</i> Sporulation of <i>A. solani</i>	7
4.2. Ability of <i>Alternaria sp.</i> to produce mycotoxin(S)	13
5. Pathological studies	14
5.1. Inoculum potential	14
5.2. Hybrids and varietals reaction	15
5.3. Effect of plant age on disease inciden <i>ce</i>	17
6. Effect of agricultural practices on disease incidence	18
6.1. Effect of fertilization	18
6.2. Effect of intercropping	21
7. Disease control	22
7.1. Chemical Control	22
7.1.1. Effect of fungicides	22
7.1.2. Effect of some chemicals on inducing tomato plant resistance against	
early blight disease	27
7.2. Biological control	29
7.2.1. Antagonistic microorganisms	29
7.3. Plant extracts	32
MATERIALS AND METHODS	37
1. Isolation, purification, identification and maintenance of the causal	31
fungi	37
1.1. Isolation of the causal fungus from different locations	37
1.2. Purification and identification of the fungal isolates	37
1.3. Maintenance and storing of stock cultures	38
2. Media composition	38
2.1. Preparation of media	38
2.1.1. Czapek's broth (Cz broth)	38
2.1.2. Czapek's agar (Cz agar)	38
2.1.3. Nutrient agar (NA)	38
2.1.4. Potato dextrose agar (PDA)	38
2.1.5. Potato dextrose broth (PDB)	38
2.1.6. Potato agar (PA)	39
2.1.7. SMKY broth	39
2.1.8. SMKY agar	39
2.1.9. Talboys and Burch medium	39

2.1.10. Tomato juice agar (TA)	39
2.1.11. Tomato- potato agar (TPA)	39
2.1.12. Tryptone yeast glucose agar (TYG agar)	40
2.1.13. Tryptone yeast glucose broth (TYG broth)	40
2.1.14. V-8 agar	40
2.1.15. V-88 agar	40
2.2. Sterilization of media	40
2.3. Inoculation of media	40
3. Physiological studies	41
3.1. Comparative studies among the causal fungal isolates	41
3.1.1 Determination of mycelial growth on different	
media	41
3.1. 2. Fungal sporulation	41
3.2. Toxicological experiments	42
3.2.1. Extraction of mycotoxin(s)	42
3.2.1.1. Extraction from synthetic Media	42
3.2.1.2. Extraction from tomato fruits	42
3.2.1.3. Mycotoxin(s) bioassay (bacterial inhibition)	
technique	43
4. Pathological Studies	44
4.1. Inoculum preparation	44
4.1.1. Mycelial fragment preparation	44
4.1.2. Preparation of spore suspension:	44
4.1.3. Disease Assessment	45
4.2. Pathogenecity test:	45
4.3. Host range	46
4.4. Effect of different tomato plant ages on disease incidence	46
4.5. Effect of ripening stages of tomato fruit on disease incidence	
under Lab. conditions	47
4.6. Comparative studies on A. solani isolates causing early blight	
and/or collar rot diseases on tomato plants	48
4.6.1. Capability of collar rot isolates to cause early blight	
disease on tomato plants	48
4.6.2. Capability of early blight isolates to cause collar rot	
disease on tomato seedlings:	48
4.6.3. Disease development on collar rot infected tomato	
seedlings	48
4.7. Tomato hybrids and varieties reactions	49
4.7.1. Greenhouse experiment	49
4.7.2. Laboratory experiment	49
4.73. Field experiment	50
5. Effect of agricultural practices on disease incidence	51

5.1. Effect of fertilization	51
5.1.1. Effect of different rates of fertilization on disease	
intensity and fruits yield of natural infection under field	
conditions	51
5.2. Effect of intercropping	52
5.2.1. Effect of intercropping on disease intensity and tomato	
yield (fruits number and weight) under natural	
Infection	52
6. Molecular studies	53
6.1. RAPD-PCR analysis of genetic variations among isolates of A.	
solani	53
6.1.1. DNA extraction	54
6.1.2. Random Amplified Polymorphism DNA technique	
(RAPD)	54
6.1.3. Amplified product analysis	55
6.1.4. Gel analysis	55
6.1.5. Statistical analyses	55
6.1.6. Electrophoresis	55
7. Disease control	56
7.1. Chemical control	56
7.1.1. Fungicides used	56
7.1.1.1. In vitro effect of tested fungicides on A. solani	
linear growth	56
7.1.1.2. <i>In vivo</i> effect of tested fungicides on tomato early	
blight disease	57
7.1.2. Determination of the capability of some chemicals to	
induce tomato plant resistant against early blight	
disease	59
7.1.2.1. Greenhouse experiment	59
7.1.2.2. Field experiment	59
7.1.2.3. Genetic variation among of tomato plants treated	
and untreated with tested inducer resistance	
materials	60
7.2. Biological control	61
7.2.1. Isolation and identification of the bioagents	61
7.2.1.1. <i>In vitro</i> experiment	61
7.2.1.2. <i>In vivo</i> experiment	62
7. 3. Plant extracts	63
7. 3.1. Extraction by water	63
7. 3.2. Extraction by hexane	64
7.3.3. In vitro experiment	64
7. 3.4. <i>In vivo</i> experiment	64

8. Statistical analysis	65
EXPERIMENTAL RESULTS	66
1. Isolation and identification of the causal fungi	66
2. Physiological studies	68
2.1. Determination of mycelial growth on different media	68
2.2. Fungul sporulation	70
2.2.1. Sporulation of A. solani isolates the causal of tomato	
early blight disease:	70
2.2.2. Sporulation of A. solani isolates the causal of tomato	
collar rot disease	73
2.2. Determination of the ability of A. solani to produce	
myctoxin(s)	75
3. Pathological studies	76
3.1. Aggressiveness of A. solani Isolates	76
3.2. Host Range	79
3.3. Effect of tomato plant age on disease incidence	79
3.4. Effect of ripening stage of tomato fruits on disease incidence	
under Lab. conditions:	82
3.5. Comparative studies on A. solani isolates causing early blight	
and/or collar rot diseases on tomato plants	83
3.5.1. Capability of collar rot isolates to cause early blight	
disease on tomato plants	83
3.5.2. Capability of early blight isolates to cause collar rot	
disease on tomato seedlings	85
3.5.3. Disease development of collar rot on the infected tomato	
seedlings	86
3.6. Tomato hybrids and varieties reactions	86
3.6.1. Greenhouse experiment	87
3.6.2. Laboratory experiment	90
3.6.2. Field experiment	90
4. Effect of agricultural practices on disease incidence	95
4.1. Effect of fertilization	95
4.1.1. Effect of different rates of fertilizers on disease intensity	
of natural infection under field conditions	95
4.1.2. Effect of fertilizers on tomato fruits (number and	
weight) under natural infection with A. solani	95
4.2. Effect of intercropping	99
4.2.1. Effect of intercropping of tomato and other plants	
on disease intensity under natural infection with	
A. solani	99
4.2.2. Effect of intercropping on tomato yield (fruits number	
and weight) under natural infection	101

5. Molecular studies	104
5.1. RAPD-PCR analysis of genetic variations among isolates of	
A. solani	
6. Disease control	105
6.1. Chemical control	105
6.1.1. In vitro effect of tested fungicides on A. solani linear	
growth	105
6.1.2. <i>In vivo</i> effect of tested fungicides on tomato early blight	
disease	105
6.2. Capability of some chemicals to induce tomato plant resistant	
against early blight disease	108
6.2.1. Greenhouse experiments	108
6.2.2. Field experiments	111
6.2.3. Genetic variation among tomato plants treated with	
tested resistance inducer materials	117
6.3. Biological control	121
6.3.1. <i>In vitro</i> experiment	121
6.3.2. <i>In vivo</i> experiments	122
6.4. Plant extracts	124
6.4.1. <i>In vitro</i> experiment	124
6.4.2. <i>In vivo</i> experiment	124
DISCUSSION	128
SUMMARY	151
REFERENCES	155
ARABIC SUMMARY	

INTRODUCTION

In Egypt tomato (*Lycopersicon esculentum* Mill.), ranked as the number one vegetable cash crop with total planting area 459,283 feddan which yielded about 7,140,198 ton of fruits (Department of Agricultural Economic Statistical, Ministry of Agriculture and Land Reclamation, March 2005). This area is about 31.5% of the total vegetable cultivated area in Egypt. Globally, Egypt ranked in the fifth position in growing tomato crop. Egyptian consumption per capita is almost equal to the American one. Egyptian climate is favourable for tomato production as well as incidence of early blight disease most of the year.

Tomato is considered as one of the highest nutritional crops because of its high contents of vitamin C as well as many chemical compounds and elements which are not found in the other Solanaceae crops. Tomato plants are vulnerable to attack by many destructive pathogens. Several fungal diseases are affecting tomato plants in all growing stages causing a considerable reduction in fruit yield per feddan.

Alternaria solani (Ellis and Martin) Jones and Grout, is known to be the causal agent of two distinct phases on tomato plants, *i.e.* early blight and collar rot (Pritchard and Porte, 1921). Early blight disease is responsible of most serious problem on tomato than collar rot. Collar rot is mainly a seedbed disease that carried to the field on tomato transplants and has been associated with the southern production of tomato seedlings in open fields. Meanwhile, early blight disease occurs wherever tomatoes are grown, under humid or semiarid climates, with dew or water irrigation, which providing good conditions for disease development (Tsror and Bieche, 1999). The causal agent is an airborne fungus, whose dark multicultural conidia are dispersed by wind and water splash (Jones,

1991). It is well known that sporulation of *A. solani* is very scarce, either on synthetic or on semi-synthetic media, using the conventional methods Benliglu and Delen (1996). The pathogen penetrates wounded leaves, causing typical symptoms of concentric rings that severely damage the foliage, resulting in considerable reduce yield (number of fruits and size)

Because of increasing the importance of early blight disease all over the world, studies for its control are continually applied in different countries such as Brazil (Romeiro *et al.*, 2000 and Tofoli *et al.*, 2003), Canada (Lynch *et al.*, 1991 and Jong *et al.*, 2001), Cuba (Sueiro-Pelegrin *et al.*, 2003), Egypt (El-Abyad *et al.*, 1996; Ismail, 1999 and Ghoma, 2000), Greece (Vloutoglou *et al.*, 2000), Israel (Tsror and Bieche, 1999), Nigeria (Gwary and Nahunnaro, 1998), Romania (Tomescu *et al.*, 2002), SriLanka (Wickramaarachchi *et al.*, 2003), Turkey (Ozcan and Boyraz, 2000) and USA (Gardner and Shoemaker, 1999 and Tietjen *et al.*, 2001).

The present investigation was conducted to address some important issues concerning the nature of the causal pathogen of tomato early blight and/or collar rot diseases as well as different approaches for its control. The first objective was to explore the host/pathogen interaction especially pathogenicity of different *A. solani* isolates and susceptibility of different commercial tomato cultivars to both early blight and collar rot infection. Also, the influence of plant age and ripping stage on the development of tomato early blight disease was investigated. The second objective was to determine the combined effect of different semi-synthetic media and different incubation conditions on the induction of conidial spores of *A. solani*. Also, the capability of the tested isolates to produce *in vitro* mycotoxin substances was studied. Moreover, molecular characteristics,

using random amplified polymorphic DNA (RAPD) analysis, polymerase chain reaction (PCR) technique was followed to define genetic variations Among the tested *A. solani* isolates. Third objective of this investigation was to explore different *in vitro* and *in vivo* approaches for early blight disease control, *i.e.* chemical and biological control. In this concern, different fungicides and/or simple chemical substrates, such as phosphate salts and potassium nitrate, as well as salicylic acid and gibberellic acid, were evaluated for their inhibitory effect against the causal fungus and disease intensity. Also, the capability of different antagonistic fungi and bacteria were evaluated for their effects as biocontrol agents against the causal fungus of tomato early blight disease.

REVIEW OF LITERATURE

1. Globally distribution of tomato early blight disease:

Early blight disease, caused by *Alternaria solani* (Ellis and Martin) Jones and Grout, occurs wherever tomatoes are grown in humid or semiarid climates, with dew or irrigation water providing conditions for disease development (Jones, 1991). The disease was recorded in most of the world countries, i.e. Argentina (Monaco et al., 1999), Brazil (Romeiro et al., 2000; Leite et al., 2003 and Tofoli etal., 2003), Bulgaria (Stancheva and Stamova, 1990), Cameroon (Fontem et al., 1999 and Fontem, 2003), Canada (Holley et al., 1985; Tolman et al., 1986; Srivastava et al., 1989; Fry and Shtieberg, 1990; Lynch et al., 1991 and Jong et al., 2001), China (Zhang-GuoQiang et al., 2002; Xu-XiangYang et al., 2002; Fang-Ling et al., 2002 and Zhang-JianGuo et al., 2003)), Cuba (Castellanos et al., 1989; Andreu-Rodriguez and Cupull-Santana, 1993; Castellanos et al., 1995; Salgado et al., 1999; Gonzalez-Chavez et al., 2003 and Sueiro-Pelegrin et al., 2003), Egypt (Saad and Stino, 1982; Ahmed and Saleh, 1987; El-Abyad et al., 1993; Abou-Zeid., 1995; El-Abyad et al., 1996 and Ismail, 1999), Greece (Vakalouakis, 1991 and Vloutoglou et al., 2000), India (Sharma et al., 1997; Krishna-Swamy et al., 1998; Sawant et al., 1999; Babu et al., 2000a; Chhabra et al., 2000; Singh et al., 2000; Suryavanshi et al., 2000; Sawant and Desai, 2001 and Prasad and Naik, 2003), Israel (Shtienberg et al., 1996 and Tsror and Bieche, 1999), Japan (Langsdorf et al., 1991; Okamura et al., 1996 and Ichihara and Oikawa, 1997), Korea Republic (Lee-HyangBurm et al., 1995) Lithuania (Surviliene et al., 2003) Mexico (Gomez-Rodriguez et al., 2003), Nigeria (Gwary and Nahunnaro, 1998), Romania (Tomescu et al., 2002), Republic of Macedonia (Jovancev, 1998), Russia (Kozlovskii and Kvasnyuk, 1984), SriLanka (Wickramaarachchi *et al.*, 2003), Taiwan (Liu-ChienHui *et al.*, 1996 and Liu-ChienHui *et al.*, 1997), Turkey (Benlioglu and Delen, 1996; Delen *et al.*, 1996; Ozcelik and Ozcelik, 1997 and Ozcan and Boyraz, 2000), USA (Christ, 1991; Edwards *et al.*, 1996; Louws *et al.*, 1996; Goth and Keane, 1997; Krohn *et al.*, 1998; Gardner and Shoemaker, 1999 and Tietjen *et al.*, 2001) and Zambia (Andersson, 1987).

2. The Causal organism:

Many investigators reported that early blight disease, caused by *Alternaria solani*, is considered as the most important foliar disease on tomato (Saad and Stino, 1982; Ahmed and Saleh, 1987; Maiero *et al.*, 1990; Vakalounkis, 1991; Abou-Zeid., 1995; Moretto and Barreto, 1995; El-Abyad *et al.*, 1996; Keinath *et al.*, 1996; Krishna-Swamy *et al.*, 1998; Weir *et al.*, 1998; Fontem *et al.*, 1999; Ismail, 1999; Tsror and Bieche, 1999 1999; Babu *et al.*, 2000a; Foolad *et al.*, 2000; Vloutoglou *et al.*, 2000; and Christ and Haynes, 2001).

Madden *et al.* (1978) reported that the principal foliar disease of tomato in North Eastern USA is early blight, caused by *Alternaria solani*. The disease characterized by dark lesions with concentric rings, first evident on the lower leaves. Eventually, defoliation becomes pronounced as the diseases progress.

Langsdorf *et al.* (1990) reported that avirulent isolate of *A. solani* was obtained from potato leaves infected by early blight. The fungus was maintained on V-8 juice agar slants and stored at 4°C.