AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOPHYSICS DEPARTMENT

AIRBORNE GAMMA RAY SPECTROMETRY AND MAGNETIC DATA EVALUATION OVER THE EAST WADI LIGAN AREA, EASTERN DESERT, EGYPT

A THESIS

Submitted for the partial fulfillment for the requirements of the M.Sc. degree in Geophysics

BY MAHITAB ALI SAYED ALI

Geophysicist, Exploration Department, North Bahariya Petroleum Company, Cairo, Egypt.

To Geophysics Department – Faculty of Science Ain Shams University

SUPERVISORS

Prof. Dr. Sami H. Abd Alnabi

Professor of geophysics, Geophysics Dept., Faculty of Science, Ain Shams University, Cairo, Egypt.

Prof. Dr. Salah Eldin A. Mousa Prof. of geophysics, Head of the Geophysics Dept., Faculty of Science, Ain Shams University, Cairo, Egypt Prof. Dr. Atef Ali Ismail,

Prof. of geophysics, Head of Airborne Geophysics Dept., Exploration Division, Nuclear Materials Authority, Cairo, Egypt.

AIRBORNE GAMMA RAY SPECTROMETRY AND MAGNETIC DATA EVALUATION OVER THE EAST WADI LIGAN AREA, EASTERN DESERT, EGYPT.

Supervision Committee Sheet:

Prof.Dr. Sami Hamed Abd Alnabi

Professor of Geophysics.

Faculty of Science,

Ain Shams University

Prof.Dr. Salah Eldin Abd Elwahab Mousa

Professor of Geophysics

Head of Geophysics Department.

Faculty of Science,

Ain Shams University

Prof.Dr. Atef Ali Ismail

Professor of Geophysics

Head of Airborne Geophysics Department.

Exploration Division,

Nuclear Magnetic Authority.

APPROVAL SHEET

AIRBORNE GAMMA RAY SPECTROMETRY AND MAGNETIC DATA EVALUATION OVER THE EAST WADI LIGAN AREA, EASTERN DESERT, EGYPT.

By

Mahitab Ali Sayed Ali
(B.Sc.In Geology &Geophysics,2013)
Ain Shams University.

This Thesis for M.Sc. degree has been Approved by:

Prof.Dr. Salah Eldin Abd Elwahab Mousa

Prof. of Geophysics, Ain Shams University.

Prof.Dr. Atef Ali Ismail

Prof. of Geophysics, Nuclear Materials Authority.

Prof.Dr. Sultan Awad Sultan

Prof. of Geophysics, NRIAG, Helwan.

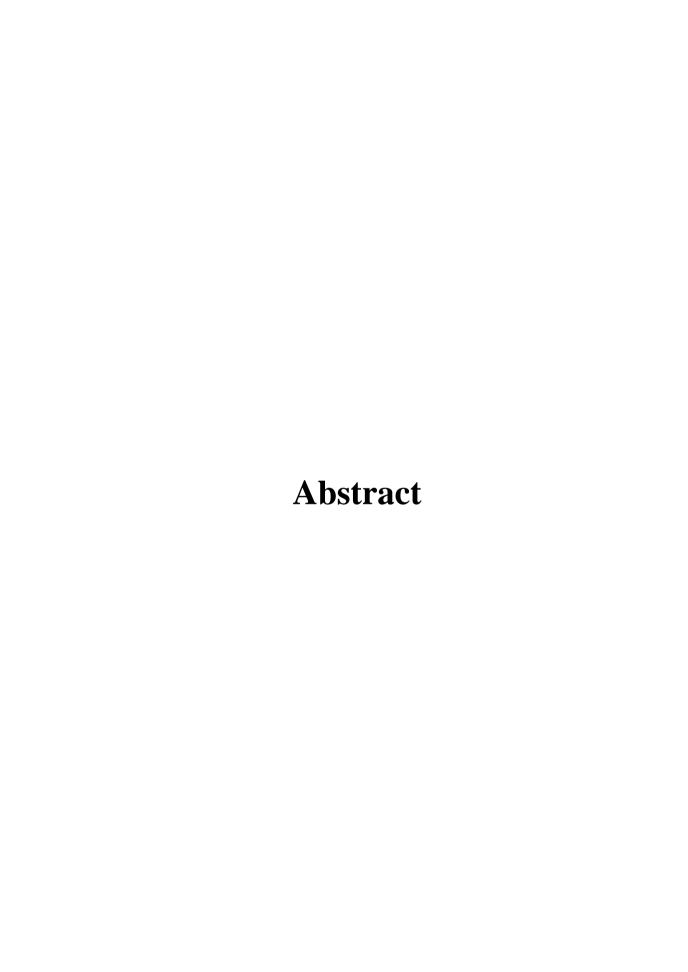
Prof.Dr. Hassan Saleh Sabet

Prof. of Geophysics, AlAzhar University.

Date of examination: / /

ACKNOWLEDGMENTS

Praise be to ALLAH, the Lord of the worlds, by whose grace this work has been completed.


The author wishes to express his thanks and gratitude to Dr. Sami H. Abd Al Nabi, Prof. of geophysics, Geophysics Dept., Faculty of science, Ain Shams University, Cairo, Egypt, for his supervision of this study.

Grateful acknowledgment is due Dr. Salah Eldin A. Mousa Assist. Prof. of geophysics, and head of the Geophysics Dept., Faculty of Science, Ain Shams University, Cairo, Egypt, for supervising the work and for kind support.

The author is deeply grateful to Dr. Atef Ali Ismail, Prof. of applied geophysics, and head of the Airborne Geophysical Dept., Exploration Division, Nuclear Materials Authority, Cairo, Egypt, for supervising the work, faithful guidance, and critical reviewing of the manuscript.

The author is especially appreciative to Dr. Ali Mohamed Mostafa, Researcher of applied geophysics, Exploration Division, Nuclear Materials Authority, Cairo, Egypt, for his continuous help, fruitful discussion and criticism as well as for his sincere guidance

Finally, I am deeply indebted to my mother, brother and sister for their kind encouragement and help.

Sayed, Mahitab Ali." Airborne Gamma Ray Spectrometry and Magnetic Data Evaluation over the East Wadi Ligan Area, Eastern Desert, Egypt". Ms.c. degree, Ain Shams University, Faculty of Science, Geophysics Department, 2017.

ABSTRACT

The studied Wadi Ligan area is located in the Central Eastern Desert of Egypt between latitudes 27°50' N- 28°05' N and longitudes 32°10' E- 32° 40' E and approximated 2052 km2. The geology of this area consists, for the most part of exposures, of Upper Cretaceous, Eocene and Quaternary Wadi sediments. Precambrian metavolcanics, metagabbro-diorite complex and younger granites are exposed in the east of the area.

The purpose of this study is the analysis, evaluation and interpretation of the aerial radiospectrometric and magnetometric survey data acquired over East Wadi Ligan area. The interpretation is mainly devoted towards the achievement of three main objectives namely: geological (lithological and tectonical) mapping, mineral exploration especially uranium anomalous zones and environmental radiospectrometric monitoring of the area under consideration.

The area under consideration has been involved in the aerial multichannel gamma-ray and magnetic survey conducted by Aero-service Division, Western Geophysical Company of America, in 1983, over a large segment of the Eastern Desert of Egypt, as a part of the Mineral, Petroleum and Ground Water Assessment Program (MPGAP). Conversion of the gridded data of the aerial magnetic and multi-channel gamma-ray survey conducted over the studied area- to a common image format made it possible to display and manipulate these originally non-image data by standard digital image processing technique. In this way some interesting false colour composite images were produced for some selected combinations from the various radiometric parameters. These radiometric composite images offered much in terms of lithologic discrimination based on colour differences and showed distinct efficiency in defining areas where different lithofacies occur.

Applications of univariate, bivariate and multivariate statistical methods of analysis have been developed to interpret quantitatively aerial gamma-ray spectrometric survey data. The integrated results gained from these analyses were presented on interpreted radio-lithologic unit map (IRLU). These map enabled the identification of some significant modifications on the mapped surface geology of the studied area. Five locations of anomalously high U abundance were outlined. There represent exploration targets of high priority for ground geological, geophysical and geochemical follow-up investigations.

The natural radiation (exposure rate) of the study area is frequently referred as a standard for comparing additional sources of man-made radiation such as atomic weapon fallout, nuclear power generation, radioactive waste disposal, etc. Furthermore, the dose rate of the study area remains in the safe side and for under the maximum permissible safe radiation dose without harm to the individual, with continuous external irradiation of the whole body except the eastern sides that should be subjected for further follow up investigations.

2D-frequency domain filtering techniques were applied on the aerial magnetic data. There included: reduction to the north magnetic pole, isolation of regional and residual magnetic components. Depth calculations were applied on some selected magnetic anomalies to determine the depths to their causative geological sources. Results obtained from these interpretation techniques were used in integrated manner to construct the basement tectonic map of the study area. It shows that structurally, the predominant direction in the study area is the NW-SE and the basement highs exposed at eastern part. This interpreted tectonic map has been quantified through the application of the 2D-magnetic modeling technique.

CONTENTS

	Page
CHAPTER(I): INTRODUCTION	
1.1. Location of the Survey Area	1
1.2. Topographic features of the study area	2
1.3. Scope and Aim of the Study	4
1.4. Previous Work	5
CHAPTER(II): GENERAL GEOLOGY AND REMOTE SENSING	
2.1. The Satellite Image Map	6
2.2. Stratigraphic Sequence of the Study Area	8
2.2.1. Precambrian rocks	9
a. Metavolcanics	9
b. Dokhan volcanics	9
c. Younger Granitoids	10
d. Metagabro-diorite Complex	10
2.2.2. Lower Cretaceous-Quaternary deposits	11
a. Wadi Qena Formation	11
b. Galala Formation	12
c. Umm Omeiyid Formation	13
d. Hawashiya Formation	14
e. Rakhiyat Formation	14
f. Sudr Formation	15
g. Esna Formation	15
h. Serai Formation	16
i. Wadi deposits and Fonglomerate	17
2.3. Structure of the Area	18

CHAPTER(III): AIRBORNE GEOPHYSICAL SURVEY	
3.1. Data Acquisition	20
3.1.1. Aircraft	21
3.1.2. Camera	22
3.1.3. Survey Instrumentation	22
a. Airborne Gamma-ray Spectrometer	22
b. Airborne Magnetometer	24
3.1.4. Recording System	25
3.2. Data Reduction and Processing	26
3.2.1. Airborne Gamma-Ray Spectrometric Measurements	26
a. General	26
b. Sources of error	28
i. Scattering Effects	28
ii. Background Effects	29
iii. Atmospheric Effects	30
c. Correction of the Radiometric Data	31
i. Background Correction	31
ii. Stripping Correction	32
iii. Altitude Correction	34
iv. Conversions of Count Rates to Ground Concentration	35
d. Element Ratio Calculations	35
3.2.2. Airborne Magnetometric Measurements	36
a. Theoretical Bases	36
b. Data Reduction	37
i. Error From Data Acquisition	37
ii. Diurnal Correction	38
iii.International Geomagnetic Reference Field (IGRF)	38
3.3 Data Presentation	39

3.3.1. Gridding of the Geophysical Data	39
3.3.2. Conversion of the Geophysical Data to Image Format	39
3.3.3. Generation of the Geophysical Composite Colour Images	41
CHAPTER(IV): ANALYSIS AND INTERPRETATION OF AIRBORNE GAMMA-RAY SPECTROMETRIC DATA	
4.1. Qualitative Interpretation Of Aerial Gamma-Ray Spectrometric Data.	42
4.1.1. General	42
4.1.2. Description of the Four radiometric Variables	43
4.1.3. Description of the Radiometric Composite Maps	51
4.1.4. Construction of the Interpreted Aerial Spectral-Radiometric Zonation Map	57
4.2. Quantitative Interpretation Of Aerial Gamma-Ray Spectrometric Data	63
4.2.1. Statistical Analysis of the Spectral Radiometric data	63
a.Coefficient of Variation	63
b.Application of Inference Tests	66
i.Bartlett's test	66
ii. Analysis of Variances test (ANOVA)	68
iii. Fisher's (F-) test	69
iv. Student's test	70
c.Identification of radioelements leads	71
4.2.2. Aerial Radiometric Environmental Monitoring	78
a. General	78
b. Estimation and Discussion the Results of Exposure Rates and Dose Rates	80

AEROMAGNETIC DATA	
5.1. Qualitative Interpretation Of Aeromagnetic Data	87
5.1.1.General	87
5.1.2.Description of the aeromagnetic Maps	90
a. Frequency domain processing	92
b. Reduction to the north magnetic pole	92
c. Computation and Analysis of the Energy (Power) Spectrum	96
d. Separation Of Magnetic Anomalies	100
5.2. Quantitative Interpretation Of Aeromagnetic Data	108
5.2.1.General	108
5.2.2.Depth Estimation Techniques	110
a.Analytic Signal	110
b. Source Parameter Imaging (SPI) Technique	111
c.Discussion of the Results of Depth Estimation	112
5.2.3.Interpreted Magnetic Basement Tectonic Map	116
5.2.4.2D-Magnetic Profile Modeling	121
a.General	121
b. Discussion the Results of the 2D Magnetic Profile Modeling	124
CHAPTER (VI): SUMMARY AND CONCLUSIONS	128
REFERENCES	139

LIST OF FIGURES

Fig.No.		Page
1	Map of Egypt Showing Location of East Wadi Ligan Area, Central Eastern Desert.	1
2	Filled-Colour Topographic Contour Map of the Studied East Wadi Ligan Area, Central Eastern Desert, Egypt, reproduced from the Topographic Map Published by the Egyptian Survey, 1975.	3
3	False Colour Landsat MSS Image Photomap, East Wadi Ligan Area, Central Eastern Desert, Egypt (after the Egyptian Remote Sensing Center, Cairo (Atlas, 1992)).	7
4	Generalized Geologic Map of the East Wadi Ligan Area, Central Eastern Desert, Egypt (after the Egyptian Geological Survey and Mining Authority "EGSMA", 1987).	8
5	Index Map Showing the Areas Covered by the Systematic Spectral Radiometric and Magnetic Surveys flown 1984 by Aero-Service, Western Geophysical Company, USA, in Relation to Abu-Had Area, Central Eastern Desert, Egypt.	21
6	Flight path of the MPGAP project Conducted by Aeroservice division, Western Geophysical company of America.	21
7	Aircraft Internal View Showing Airborne Geophysical System Configuration used in an airborne gamma-ray spectrometer (Bristow,1979)	22
8	Filled-Colour Contour Map of Aerial Total Count Radiometric data of the East Wadi Ligan Area, Central Eastern Desert, Egypt.	47
9	Filled-Colour Contour Map of Aerial Spectral Radiometric potassium of the East Wadi Ligan Area, Central Eastern Desert, Egypt.	48
10	Filled-Colour Contour Map of Aerial Spectral Radiometric eU of the East Wadi Ligan, Central Eastern Desert, Egypt.	49
11	Filled-Colour Contour Map of Aerial Spectral Radiometric eTh of the East Wadi Ligan, Central Eastern Desert, Egypt.	50
12	Radioelement Ratio False Colour Composite Image Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	53

13	Potassium False Colour Composite Image Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	54
14	Equivalent Uranium False Colour Composite Image Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	55
15	Equivalent Thorium False Colour Composite Image Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	56
16	Interpreted Spectral Radiometric Zones Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	62
17	Interpreted Radiometric-Lithologic Unit (IRLU) Map of East Wadi Ligan Area, Central Eastern Desert, Egypt, Based on the Statistical Analysis of Aerial Total-Count Gamma Radiation Measurement.	77
18	Filled-Colour Contour Map of the Radiation Exposure Rate, East Wadi Ligan Area, Central Eastern Desert, Egypt.	83
19	Filled-Colour Contour Map of the Radiation Dose Rate, East Wadi Ligan Area, Central Eastern Desert, Egypt.	84
20	Zonation Map of the Dose Rate, East Wadi Ligan Area, Central Eastern Desert, Egypt.	86
21	Filled-Colour Contour Map of the Aerial Total Magnetic Field Intensity, East Wadi Ligan Area, Central Eastern Desert, Egypt.	91
22	Filled-Colour Contour Map of the Reduction to the Pole Aerial Total Magnetic, East Wadi Ligan Area, Central Eastern Desert, Egypt.	95
23	A Typical (power) Spectrum of Magnetic data.	97
24	A Typical Interpretation of an Energy (power) Spectrum Into Three Components (deep sources, shallow sources, and noise), East Wadi Ligan Area, Central Eastern Desert, Egypt.	99
25	A Typical Gaussian Filter Technique of Separation of Magnetic data.	100
26	Filled-Colour Contour Map of the Regional Magnetic- Component, East Wadi Ligan Area, Central Eastern Desert, Egypt.	103

27	Filled-Colour Contour Map of the Residual Magnetic- Component, East Wadi Ligan Area, Central Eastern Desert, Egypt.	106
28	Qualitative Interpreted Magnetic Zones Map, East Wadi Ligan Area, Central Eastern Desert, Egypt.	107
29	Filled colour contour Map of the Calculated Depths Using Source Parameter Image (SPI) Technique on RTP map over East Wadi Ligan Area, Central Eastern Desert, Egypt.	114
30	Filled colour contour Map of the Calculated Depths Using Analytic Signal (AS) Technique over East Wadi Ligan Area, Central Eastern Desert, Egypt.	115
31	Interpreted Magnetic Basement Tectonic Map of East Wadi Ligan Area, Central Eastern Desert, Egypt.	120
32	Two - Dimensional (2D) Modeled RTP Magnetic Profile F1-F1', East Wadi Ligan Area, Central Eastern Desert, Egypt.	126
33	Two - Dimensional (2D) Modeled RTP Magnetic Profile F2- F2', East Wadi Ligan Area, Central Eastern Desert, Egypt.	127
34	Integrated map between Airborne Radiometric and Aeromagnetic Data, East Wadi Ligan Area, Central Eastern Desert, Egypt.	138

LIST OF TABLES

Table No.		Page
1	Summary of the Qualitative Interpreted spectral radiometric Zones, East Wadi Ligan Area, Central Eastern Desert, Egypt.	61
2	Summary of the calculated simple statistical characteristics and the results of Coefficient of Variation test of the TC measurements for some selected groups of rock units over the East Wadi Ligan Area, Central Eastern Desert, Egypt.	65
3	Arrangement of the standard deviation on the TC radiometric data of East Wadi Ligan Area , Central Eastern desert	67
4	Results of application the first statistical inference test (Bartlett's test) on the computed characteristic statistics of the TC distributions for some selected groups of rock units, East Wadi Ligan Area, Central Eastern Desert.	68
5	Results of application the third and the fourth statistical inference test (Fisher's test and Student's test) on the computed characteristic statistics of the TC distributions for some selected groups of rock units, East Wadi Ligan Area, Central Eastern Desert.	71
6	Results of application of the Univariate Statistical Analysis test on the computed characteristics statistics of K concentration distributions of some selected groups of rock units, East Wadi Ligan area, Central Eastern Desert, Egypt.	72
7	Results of application of the Univariate Statistical Analysis test on the computed characteristics statistics of eU concentration distributions of some selected groups of rock units, East Wadi Ligan area, Central Eastern Desert, Egypt.	73
8	Results of application of the Univariate Statistical Analysis test on the computed characteristics statistics of eTh concentration distributions of some selected groups of rock units, East Wadi Ligan area, Central Eastern Desert, Egypt.	74
9	Principal Man-made Nuclides (after IAEA, 1991)	79