

ASYNCHRONOUS SAR-ASSISTED TWO-STAGE PIPELINE ANALOG TO DIGITAL CONVERTER USING RING AMPLIFIER

By

Karim Moataz Mohamed Mahmoud Ali Megawer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

ASYNCHRONOUS SAR-ASSISTED TWO-STAGE PIPELINE ANALOG TO DIGITAL CONVERTER **USING RING AMPLIFIER**

By

Karim Moataz Mohamed Mahmoud Ali Megawer

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Ahmed Nader Mohieldin

Associate Professor **Electronics and Communications Engineering Department** Faculty of Engineering, Cairo University

Mohamed M. Aboudina

Faisal A. Hussien

Assistant Professor Electronics and Communications Engineering Department Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Assistant Professor Electronics and Communications Engineering Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ASYNCHRONOUS SAR-ASSISTED TWO-STAGE PIPELINE ANALOG TO DIGITAL CONVERTER **USING RING AMPLIFIER**

By

Karim Moataz Mohamed Mahmoud Ali Megawer

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Dr. Ahmed Nader Mohieldin Thesis Main Advisor Associate Professor, Faculty of Engineering, Cairo University Internal Examiner Prof. Hossam A. H. Fahmy

Professor, Faculty of Engineering, Cairo University

Approved by the Examining Committee

Prof. Mohamed Amin Dessouky Professor, Faculty of Engineering, Ain Shams University **External Examiner**

Engineer's Name: Karim Moataz Mohamed Mahmoud Ali Megawer

Date of Birth: 26/04/1990 **Nationality:** Egyptian

E-mail: karim.megawer@gmail.com

Phone: 01004589384

Address: Zahraa El Maadi, Cairo, 11728

Registration Date: 01/10/2013 **Awarding Date:**/2016 **Degree:** Master of Science

Department: Electronics and Communications Engineering

Supervisors: Dr. Ahmed Nader Mohieldin

Dr. Mohamed M. Aboudina

Dr. Faisal A. Hussien

Examiners: Prof. Mohamed Amin Dessouky (External examiner - Ain Shams

University)

Prof. Hossam A. H. Fahmy (Internal examiner)
Dr. Ahmed Nader Mohieldin (Thesis main advisor)

Title of Thesis:

ASYNCHRONOUS SAR-ASSISTED TWO-STAGE PIPELINE ANALOG TO DIGITAL CONVERTER USING RING AMPLIFIER

Key Words:

Analog to Digital Converter; Pipeline ADC; SAR ADC; Ring Amplifier.

Summary:

In this thesis, an adaptive ring amplifier is proposed to introduce a degree of freedom in speed/stabilization design trade-off in the original ring amplifier. It also introduces an area efficient solution for the auto-zeroing stability problem that the conventional ring amplifier suffers from. The proposed adaptive ring amplifier improves the linearity by 10dB at the same operating frequency. Moreover, it achieves a 40% improvement in the operating frequency for the same linearity and settling requirements. It has a 98% area reduction compared to the conventional ring amplifier for the same stability conditions. A 12-bit 25MS/s SAR-Assisted two-stage pipeline ADC is designed and implemented in a low-cost 0.13 μ m CMOS technology. It consists of a 6-bit first stage followed by a 7-bit second stage utilizing the proposed adaptive ring amplifier in order to meet the stringent specifications. In addition, a detect-and-skip (DAS) capacitive DAC (CDAC) switching method is used to reduce the switching energy of the first-stage CDAC. The ADC consumes 0.89mW achieving a Figure of Merit (FoM) of 13.7 fJ/conversion-step while operating from a single 1.2V supply.

Acknowledgments

At the beginning of this thesis, I would like to thank many people who supported me and encouraged me to give more effort in order to reach better outputs. I would like to specifically thank my advisors Dr. Ahmed Nader, Dr. Mohamed Aboudina, and Dr. Faisal Hussien for their dedicated help and support. They motivated me the whole time to work harder and never to give up against any problems and challenges we faced. They also opened my mind to explore new enhancement techniques and algorithms till we reached this final form of the thesis. Of course, I can't forget my family who presents the main support for me. I would like to thank my father, my mother, and my brother Akram. I would like also to thank my friends: Mostafa Radwan, Mohamed Radwan, Mohamed Kamel, Mohamed Alaa, and Mohamed Ibrahim. I thank God for all the outputs I have reached and hope that I can even work more on it and one day others will make good use of my work and build on it to make something much better.

Table of Contents

A	cknow	ledgme	ents		i
Ta	ble of	f Conte	nts		iii
Li	st of T	Fables			vii
Li	st of l	Figures			ix
Li	st of S	Symbols	s and Abb	previations	xii
Li	st of l	Publica	tions		XV
Ał	ostrac	t			xvii
1	Intr	oductio	n		1
	1.1	Techn	ology SCA	ALING	1
	1.2	Digita	l World .		2
	1.3	Data C	Converters	Applications	3
	1.4	ADC (Characteri	zation	3
		1.4.1	Static Cl	naracterization	4
			1.4.1.1	Resolution	4
			1.4.1.2	Offset and Gain Error	4
			1.4.1.3	Differential Non-Linearity (DNL)	4
			1.4.1.4	Integral Non-Linearity (INL)	4
		1.4.2	Dynamic	c Characterization	4
			1.4.2.1	Signal to Noise Ratio (SNR)	4
			1.4.2.2	Spurious Free Dynamic Range (SFDR)	6
			1.4.2.3	Total Harmonic Distortion (THD)	6
			1.4.2.4	Signal to Noise and Distortion Ratio (SNDR)	6
		1.4.3	Effective	e Number of Bits (ENOB)	6
		1.4.4	ADC Fig	gure-of-Merit	7
	1.5	Thesis	Organiza	tion	7

2	AD(C Archi	tectures	9
	2.1	Basic A	ADC Architectures	9
		2.1.1	Flash ADC	9
		2.1.2	Delta-Sigma ADC	10
		2.1.3	Pipeline ADC	10
		2.1.4	SAR ADC	12
	2.2	SAR-A	Assisted Two-Stage Pipeline ADC	14
3	Ring	g Ampli	fier	17
	3.1	Ring A	Amplifier Concept	18
	3.2	Theory	y of Operation	19
		3.2.1	Initial Ramping	19
		3.2.2	Stabilization	20
		3.2.3	Steady State	21
	3.3	Practic	cal Implementations of Ring Amplifier	22
		3.3.1	Floating Bias Ring Amplifier	22
		3.3.2	Ring Amplifier with High Threshold Devices	22
		3.3.3	Offset-less Ring Amplifier	23
		3.3.4	Self-Biased Ring Amplifier	24
	3.4	Ring A	Amplifier Key Advantages	
		3.4.1	Rail-to-Rail Output Swing	24
		3.4.2	Efficient Slew-based Charging	25
		3.4.3	Performance Scaling with process	25
4	Ada	ptive Ri	ing Amplifier	27
	4.1	Adapti	ive Slew Rate Ring Amplifier	27
		4.1.1	Speed/Stabilization Trade-off	27
		4.1.2	Proposed Adaptive Slew Rate	29
	4.2	Adapti	ive Dead Zone Ring Amplifier	30
		4.2.1	Stability	
		4.2.2	Proposed Adaptive Dead Zone	32
	4.3	Simula	ation Results	36
5	Desi	gn Metl	hodology Of Ring Amplifier	37
	5.1	Gain .		37
	5.2			38
	5.3			40
	5.4	Stabili	ty	41
	5.5		o-differential Common-mode Feedback	42
	5.6		ary	44

6	AD(C Proto	type	47
	6.1	First S	Stage Resolution in Pipeline ADC	47
		6.1.1	Power Consumption	47
		6.1.2	ADC Linearity	49
		6.1.3	Input Sampling Accuracy	49
		6.1.4	Sub-ADC Implementation	
		6.1.5	Phase Mismatch and Clock Skew Errors	50
	6.2	SAR-A	Assisted Two-Stage Pipeline ADC	50
	6.3	Propos	sed ADC Architecture	51
		6.3.1	First SAR Stage	51
			6.3.1.1 Sampling CDAC	52
			6.3.1.2 SAR Sub-ADC	52
			6.3.1.3 Merged Capacitor Switching MCS	53
			6.3.1.4 Detect and Skip (DAS) Switching Technique	53
			6.3.1.5 First SAR Stage Simulation Results	57
		6.3.2	Comparator	60
		6.3.3	Asynchronous SAR Control Logic	62
		6.3.4	Sampling Switches	64
			6.3.4.1 Basic Bootstrap Concept	
			6.3.4.2 Circuit Implementation	
		6.3.5	Second Stage SAR Stage	
		6.3.6	Residue Amplifier	
		6.3.7	Digital Correction	73
		6.3.8	Clock Generator	74
	6.4	ADC S	Simulation Results	74
		6.4.1	Noise Analysis	74
		6.4.2	ADC ENOB	76
		6.4.3	ADC performance Summary	
7	Lay			79
	7.1		arator	
	7.2		trapped Switch	
	7.3		Sage SAR ADC	
		7.3.1	DAC Unit Cell	
		7.3.2	DAC	
		7.3.3	Analog Top	
		7.3.4	Digital Top	
		7.3.5	Big DAC Decoder	85
		7.3.6	Top	86
	7.4	_	Amplifier	
	7.5	Secon	d Stage SAR ADC	87
		7.5.1	DAC Unit Cell	87

Ar	abic	Abstrac	et																				,
References											99												
8	Con	clusion																					95
	7.7	Post-L	ayou	t AE	OC S	im	ula	ati	on	٠.	•	 •	•	•		•				•	•		94
	7.6	ADC 1	layou	t .																			93
		7.5.5	Top																				92
		7.5.4	Dig	ital	Тор	•																	91
		7.5.3	Ana	alog	Top	٠.																	91
		7.5.2	DA	C .																			88

List of Tables

4.1	Performance comparison between the adaptive and the non-adaptive ring							
	amplifier	36						
6.1	ADC Performance Summary	77						
8.1	ADC Performance Comparison	96						