

Phenotypic and genotypic study of Uropathogenic Escherichia coli

THESIS

Submitted for Fulfillment of Degree of Doctor of Philosophy In Science Microbiology

$\mathbf{B}\mathbf{v}$

ASMAA ASHOUR ABD EL LATIEF ZAID

(B. Sc. In Microbiology- chemistry 1996) (M.Sc. in Microbiology- chemistry 2001)

Supervised by

Dr. Zeinab Mohamed Hassan Kheiralla

Professor of microbiology, Botany Department, University College
of Women for Arts, Science and Education, Ain Shams University.

Dr. Magda Adbelmoneim Gamil

Professor of microbiology, Microbiology department, Faculty of Medicine,

Al Azhar University.

Dr. Maha Amin Hewedy

Assistant professor of microbiology, Botany Department, University College of Women for Arts, Science and Education, Ain Shams University.

Botany Department, University College of Women for Arts, Science and Education, Ain Shams University.

List of abbreviations

AA Aggregative adherence

AN Amikacin
CAZ Ceftazidime
CF Cephalothin

CFA Colonization factor antigen

CL Colistin
CPR Cefprizol
CXM Cefuroxime

DA Diffuse adherence

F/M Nitrofurantoin

HA Haemagglutination

HBSS Hanks balanced salt solution

IPM Imipenem

MRHA Mannose resistant haemagglutination

MSHA Mannose sensitive haemagglutination

LA Localized adherence

NA Nalidixic acid

OFX Ofloxacin

PBS Phosphate buffered saline PCR Polymerase chain reaction

RBC's Red blood curposles

UPEC Uropathogenic E. coli

UTI Urinary tract infection

Introduction

Urinary tract infection (UTI) is a serious health problem affecting millions of people and is one of the most commonly acquired bacterial infections in ambulatory and hospitalized populations (Roos et al., 2006).

Escherichia coli is the head of the large bacterial family, Enterobacteriaceae, the enteric bacteria, which are facultatively anaerobic Gram-negative rods that live in the human gastrointestinal tracts, however, it considered one of the major causes of human infectious diseases. Furthermor, it is now recognized that there are subsets of fecal E. coli currently defined as uropathogenic E. coli (UPEC) colonize periurethral area, enter urinary tract and cause UTIs (Vagarali et al., 2008).

Uropathogenic E. coli (UPEC) differ from non- pathogenic E. coli by the production of virulence factors which enable the bacteria to adhere to uroepithelial cells and to establish UTIs (Oelschlaeger et al., 2002).

Besides adherence factors, toxin, capsules, iron uptake systems and other bacterial products contribute to the virulence of the strains. The genes responsible for expression of these characteristics are normally clustered in DNA regions denominated pathogenic islands (PAIs) (Ranjan et al., 2010).

The aim of the present study was to:

The overall aims of this thesis were to study the population biology of UPEC in Egypt with a view to understanding the most significant lineages causing UTI and to inform development of rapid assays to allow identification of members of these lineages. To achieve the overall aims the following objectives were set:

- 1- To determine phenotypic characteristics of the $E.\ coli$ isolates obtained from patients showing clinical signs of urinary tract infection (UTI).
- 2- To detect the presence of genes coding for fimbria by PCR.
- 3- To compare the phenotypic and genotypic characteristics of the UPEC isolates in comparison with fecal *E. coli* isolates.
- 4- Finally in the present study we analyzed urinary tract *E. coli* isolates to obtain possible evidence of a correlation between biological characteristics and genetic one.

Acknowledgment

First and foremost, I thank God for the beneficent and most merciful and for sending me all those peoples.

I would like to express my endless gratitude and appreciation to **Dr. Zeinab Mohamed Hassan Kheirallah**, prof of microbiology, Women's college, Ain Shams university, for giving me much of her time, experience, meticulous valuable advice, accompanied with her motherhood attitude which give me endless support and encouragement.

This work had never been completed without the great help of **Dr. Magda Abdelmoneim Gamil**, prof. of microbiology, faculty of medicine, Al Azhar university. My great appreciation for her generous assistance, constructive ideas, kind supervision throughout this work.

My deep thanks are to **Dr. Maha Amin Hewedy**, assist. prof .of microbiology, Women's college, Ain Shams university, for her continuous encouragement, faithful guidance, close supervision which made it possible to overcome all difficulties.

I wish also to express my gratitude to all of the wonderful stuff in the microbiology department, faculty of medicine, Al Azhar university, especially **Dr. Salwa Alsayed**, prof. of microbiology, faculty of medicine, Al Azhar university, for giving me much of her time, support and advice.

I would like to pay special gratitude to my sister and brothers for care and effort, which was always pushing me forward.

Last but not least, my greatest thanks and best regards to my colleagues, and the stuff, in the department of botany and microbiology, Women's college, Ain Shams university for their continuous help and encouragement.

DEDICATION

To my family, especially my parents who nurtured, loved and faithfully supported me throughout my life. To my husband for unending kindness, patience and support which make anything possible and finally to my son Youssef and my daughters Farah and Mariam.

بسم الله الرحمن الرحيم

الحمد لله الذي هدانا لهذا و ما كنا لنهتدي لولا أن هدانا الله

صدق الله العظيم الآية ٤٣ من سورة الأعراف

List of contents

	Pages
Acknowledgment	I
List of content	III
List of tables	VII
List of figures	IX
List of plates	X
List of appendices	XI
Abbreviations	XII
Abstract	XIII
Introduction	XIV
Aim of the work	XV
Review of literature	1
Urinary tract infection	2
Escherichia coli	4
Growth characteristics	5
Pathotypes of Escherichia coli	6
Escherichia coli as an uropathogen	7
Escherichia coli virulence factors	8
Antibiotic susceptibility of uropathogenic E. coli	22
Materials and Methods	31
Materials	31
Specimen collection	31
Patients	31
Control group	31
Media	32
2-1- MacConkey agar	32
2-2- Sheep blood agar	32
2-3- Tryptone soy agar	33
2-4- Luria broth with 15% glycerol	34

	Pages
2-5- Nutrient broth media	34
2-6- Triple sugar iron	35
2-7- Nutrient gelatin media	35
2-8- Urea agar base	36
2-9- Tryptone wat	37
2-10- glucose phosphate liquid media	37
2-11- Simmon's citrate agar	38
2-12- Colonization factor antigen (CFA)agar	38
2-13- Seed agar (Antibiotic media)	39
3- Antibiotic susceptibility test	40
3-2- McFarland equivalence turbidity standard	40
4- Tissue culture technique	41
4-1- Cell line	41
4-2- Minimum Essential Medium (MEM)(10X)	41
5- Polymerase chain reaction technique (PCR)	48
5-1- Reagents used for PCR products detection	48
Methods	51
1-1- Isolation and identification of <i>E. coli</i>	51
1-1- Isolation of <i>E. coli</i> from urine and stool specimens	51
1-2- Identification of E. coli isolates	53
1-2-1- Biochemical reaction	53
Detection of virulence factors	56
2-1- Phenotypic methods	57
2-1-1- Haemolysin production	57
2-1-2- Congo red binding assay	57
2-1-4- Haemagglutination (HA) test	58
2-1-5- Detection of adherence ability to HEp-2 cells	60
2-1-5-a- Preparation of 1X Minimum Essential Medium	
(1X MEM)	60

	Pages
· · · · · · · · · · · · · · · · · · ·	61
2-1-5-c- preparation of bacterial culture	62
2-1-5-d- Adherence assay	62
2-2- Genotypic methods	63
2-2-1- Detection of urovirulence genes (pap, sfa and afa) using	
conventional polymerase chain reaction	
(PCR)	63
2-2-1-a- DNA purification QIAamp DNA mini kit for DNA Purification	
and extraction	63
2-2-1-b- PCR kit	65
2-2-1-c- PCR protocol using Taq DNA polymerase	65
2-2-1-d- Thermal cycling condition	66
2-2-1-e- Visualizing of PCR products	66
Statistical analysis	66
Results	67
1-Characterization and identification of the isolated	
bacteria	67
1-1-Identification of <i>E. coli</i> isolates by biochemical	67
tests	
1-2- Phenotypic characterization of the <i>E. coli</i> isolates	68
1-2-1- Congo red binding assay,,,,,,,,	68
1-2-2- Detection of haemolysin production	70
1-2-3- Antibiotic susceptibility test	72
1-2-4- Detection of haemagglutination ability with different	
species of blood	76
1-2-5- Detection of adherence ability to Hep-2 cells	79
· -	88
	88

	Pages
3- Correlation between UPEC genotypic and phenotypic	
results of UPEC isolates	94
3-1- Correlation between presence of genes and congo	
red bining assay	94
3-2- Correlation between presence of genes and blood	
haemolysis	96
3-3- Correlation between presence of genes and	
the adherence ability to cell culture	96
3-4- Correlation between presence of genes and	
the adherence patterns	96
3-5- Correlation between presence of genes and	
antibiotic sensitivity	100
3-6- Correlation between presence of genes and	
haemaggluinaion	103
Discussion	105
Conclusion	119
Recommendation	120
English summary	121
Appendices	124
References	135
Arabic summary	155

List of tables

	Pages
1- Base sequence, location and predicted sizes of amplified products	
Of oligonucleotide primers used in PCR	50
2- Congo red binding assay in UPEC and fecal <i>E. coli</i>	
(controls) isolates	69
3- Detection of different types of haemolysis in UPEC and fecal	
E. coli isolates	71
4- Activity of different antibiotics toward UPEC and fecal <i>E. coli</i>	
(controls) isolates	75
5- Haemagglutination results of UPEC and fecal <i>E. coli</i>	
(controls) isolates	78
6- Adhesion ability of UPEC and fecal E. coli (controls) isolates	
to HEp- 2 cells	80
7- Adherence pattern in UPEC and fecal E. coli	
(controls) isolates	84
8- Production of pap operon in UPEC and fecal <i>E. coli</i>	
(controls) isolates	91
9- Production of sfa operon in UPEC and fecal <i>E. coli</i>	
(controls) isolates	92
10- Production of afa operon in UPEC and fecal <i>E. coli</i>	
(controls) isolates	93
11- Congo red binding assay: Comparison of the results	
obtained by phenotypic and genotypic characteristics in	
UPEC isolates	95
12- Blood haemolysis and tissue culture: comparison of the results	
obtained by phenotypic and genotypic characteristics in	
UPEC isolates	97
13- Adherence patterns: Comparison of the results	
obtained by phenotypic and genotypic characteristics in	
UPEC isolates	99

	Pages
14- Antibiotic sensitivity: comparison of the results obtained by	
phenotypic and genotypic characteristics in UPEC isolates	102
15- Haemagglutination: comparison of the results obtained by phenotypic and genotypic characteristics in UPEC	
isolates	104

List of figures

	Pages
1- Congo red binding assay in UPEC and fecal <i>E. coli</i>	
isolates	69
2- Haemolysin production in UPEC and fecal E. coli	
isolates	71
3- Adhesion abilities of UPEC and fecal <i>E. coli</i> (controls)	
isolates to HEp- 2 cells	80
4- Adherence patterns in UPEC and fecal <i>E. coli</i> (controls)	
isolates	84