Pathology Registry of Primary Malignant Tumors of the Esophagus

Thesis

Submitted for partial fulfillment of the master degree of **In Pathology**

By:

Shahinaz Ahmed Saad El-din

(M. B., B.Ch)
Faculty of Medicine- Ain Shams University

Supervised by

Prof Dr. Zeinab Abd El-Rahamn Kotb

Professor of Pathology
Faculty of Medicine, Ain Shams University

Prof. Dr. Gamal Mohamed Fathy

Professor of Pathology Faculty of Medicine, Ain Shams University

Dr. Wesam Mohamed Osman

Assistant Professor of Pathology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Zeinab Abd El-Rahamn Kotb** Professor of Pathology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Gamal Mohamed Fathy** Professor of Pathology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I owe much to. **Dr. Wesam Mohamed Osman,** Assistant Professor of Pathology Faculty of Medicine, Ain Shams University for her continuous guidance, encouragement during the progress of this work and direct supervision.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Shahinaz Ahmed Saad El-din

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	V
Diagram	X
Introduction and Aim of the Work	1
Review of Literature	4
Material and Methods	59
Results	60
Discussion	100
Summary	107
Conclusion	109
Recommendations	110
References	111
Arabic Summary	

List of Abbreviations

APC : Adenomatosis polyposis coli.

AJCC : American joint committee of cancer.

BE : Barrett's esophagus.

BMI : Body mass index.

CCL : Centrocyte-like.

CI : Confidence interval.

CRT : Chemoradiotherapy.

CRT-S : Chemorediotherapy followed by surgery.

C-S : Chemotherapy followed by surgery.

CT : Computerized tomography.

DLC 1 : Deleted in lung esophageal cancer 1.

EAC : Esophageal adenocarcinoma.

EGFR : Epiderms growth factor receptor.

EMR : Endoscopic mucosal resection.

ESCC : Esophageal squamous cell carcinoma.

ESD : Endoscopic submucosal dissection.

EUS : Endoscopic ultrasound.

FDG-PET: 18-fluoro-deoxyglucose positron emission

tomography.

FHIT : Fragile histidine traid.

GERD : Gastroesophageal reflux disease.

GISTs : Gastrointestinal stromal tumors.

H2RLN : Serum human relaxin 2.

List of Abbreviations (Cont.)

HGD : High grade dysplasia.

HGIN : High grade intraepithelial neoplasia.

LES : Lower esophageal sphincter.

LSBE : Lower segment barrett's esophagus.

LOH : Loss of heterozygotity.

MALT : Mucosa associated lymphoid tissue.

MECC : Middle east cancer consortium.

mRNA : Messenger Ribonucleic acid.

NEPPK : Non epidermiolytic palmoplantar keratoderma.

Ors : Odds ratios.

PCNA : proliferating cell nuclear antigen.

PLA2 : Phospholipase A2.

RFA : Radiofrequency ablation.

RR : Relative risk.

RT-PCR : Reverse transcript polymerase chain reaction .

SCC : Squamous Cell Carcinoma.

SEER : Surveillance epidemiology end result.

S-CRT : Surgery with adjuvant chemorediotherapy.

SD : Standard deviation.

SPSS : Statistical package for social science.

UES : Upper esophageal sphincter.

WHO : World health organization

List of Tables

Table	Title	Page
1	WHO histological classification of	7
	oesophageal tumours	
2	Genetic alterations in squamous cell	39
	carcinoma of the oesophagus	
3	Genes and proteins involved in	41
	carcinogenesis in Barrett oesophagus	
4	TNM system, specifically referring to	45
	depth of invasion in T staging	
5	Aspect of staging is essential in	45
	determining stage-specific protocols for	
	treatment	
6	Age distribution among the studied cases	61
7	Sex distribution among the studied cases	62
8	Clinical presentation of the studied cases	63
9	Specimens types of the studied cases	64
10	Lesions site from the studied cases	65
11	Histopathological diagnosis of the	66
	studied cases	
12	Age distribution among the SCC cases	67
13	Sex distribution among the SCC cases	68
14	Clinical presentation of SCC cases	69
15	Specimens types from the SCC cases	70
16	Specimens sites from the SCC cases	70
17	Differentiation grades of the studied	71
	SCC specimens	
18	Stages of SCC in the radical specimens	73
19	Age distribution among the studied	75
	adenocarcinoma cases	
20	Sex distribution among the studied	76
	adenocarcinoma cases	
21	Clinical presentation of adenocarcinoma	77
	cases	

List of Tables (Cont.)

Table	Title	Page
22	Specimens types of the studied	78
	adenocarcinoma cases	
23	Specimens sites from the studied	79
	adenocarcinoma cases	
24	Differentiation grades of the studied	80
	adenocarcinoma specimens	
25	Stages of adenocarcinoma in radical	81
	specimens	
26	Distribution among the studied Barrett's	83
	cases	
27	Sex distribution among the studied	84
	Barret's cases	
28	Clinical presentation of Barret's cases	85
29	Percentage site of the lesion Specimens	86
	sites from the studied Barret's cases	
30	Differentiation percentages of the	87
	associated Reflux and dysplasia in	
	studied Barrett's in cases	

List of Figures

Fig.	Title	Page
1	H&E stain of a biopsy of the normal	5
	esophageal wall, showing the stratified	
	squamous cell epithelium of the	
	esophageal wall	
2	Histological section of the gastro-	6
	esophageal junction, with a black arrow	
	indicating the junction	
3	Low-grade intraepithelial neoplasia with	10
	an increase in basal cells, loss of polarity	
	in the deep epithelium and slight	
	cytological atypia	
4	High grade intraepithelial neoplasia of	11
	oesophageal squamous epithelium	
5	Squamous cell papilloma of distal	13
	oesophagus	
6	Endoscopic view of a superficial	17
	squamous cell carcinoma presenting as a	
	large nodule (CA) in a zone of erosion	
7	After spraying of 2% iodine solution, the	17
	superficial extent of the tumour becomes	
	visible as unstained light yellow area	
	(CA, arrows)	
8	Verrucous carcinoma	19
9	Spindle cell carcinoma	21
10	Basaloid squamous cell carcinoma	22
11	Highly infiltrative adenocarcinoma in	24
	Barrett oesophagus (pT3), with	
	extension into the cardia	
12	Barrett oesophagus	25
13	Adenocarcinoma, tubular type	26
14	Barrett oesophagus with low-grade	30
	intraepithelial neoplasia on the left and	
	high-grade on the right	

Fig.	Title	Page
15	High-grade intraepithelial neoplasia in	31
	Barrett oesophagus	
16	Granular cell tumour of oesophagus	35
17	Stromal tumour of the oesophagus,	36
	involving the oesophageal muscle layer	
	beneath a normal mucosa	
18	Location of the tylosiso esophageal	38
	cancer gene on chromosome 17q	
19	Spectrum of TP53 mutations in	39
	squamous cell carcinoma (SCC) and	
	adenocarcinoma (ADC) of the	
20	oesophagus	
20	Endoscopy in patients who have	43
0.1	esophageal cancer	40
21	EUS-guided fine-needle aspiration	48
22	biopsy (arrow) of celiac axis lymph node	5 0
22	T, N, and M classifications for	50
22	esophageal carcinoma	61
23 24	Age distribution among the studied cases	
25	Clinical presentation of the studied cases	63 67
26	Age distribution among the SCC cases	
27	Clinical presentation of SCC cases Age distribution among the	69 75
21	adenocarcinoma cases	13
28	Clinical presentation of adenocarcinoma	77
20	cases	, ,
29	Age distribution among the studied	83
	Barret's cases	05
30	Clinical presentation of Barret's cases	85
31	Well differentiated squamous cell	88
	carcinoma with prominent keratin pearls	2.0
	Hx&E, x100	

Fig.	Title	Page
32	Moderately differentiated squamous cell carcinoma, Hx&E, x100	88
33	Moderately differentiated squamous cell carcinoma, (higher magnification of previous image) Hx&E, x200	89
34	Moderately differentiated squamous cell carcinoma showed no muscle infiltration (stage T1) Hx&E, x40	89
35	Basaloid squamous cell carcinoma, Hx&E, x40	90
36	Basaloid squamous cell carcinoma, Hx&E, (higher view of previous image) x400	90
37	Well differentiated adenocarcinoma Hx&E, x100	91
38	well differentiated adenocarcinoma (higher magnification of the previous image), H x & E, x400	91
39	Moderately differentiated adenocarcinoma infiltrating the muscle (higher magnification of previous image) Hx&E, x100	92
40	Malignant glands infiltrating the muscle layer (higher magnification of previous image) Hx&E x200	92
41	Poorly differentiated adenocarcinoma showing sheets of malignant cells with occasional glands formation Hx&E, x100	93
42	Poorly differentiated adenocarcinoma with sheeting pattern of growth showed foci of signet ring cells, Hx&E, x400	93

Fig.	Title	Page
43	Adenocarcinoma with perineural invasion Hx&E, x100	94
44	Adenocarcinoma with perineural invasion higher magnification of previous image, Hx&E, x400	94
45	Adenocarcinoma infiltrating the lymph node with extranodal extension Hx&E, x200	95
46	Focus of reflux nearby Barrett's esophagus showed basal cell hyperplasia and elongated papillae containing prominent congested capillaries and inflammatory cells Hx&E, x200	95
47	Higher view of the reflux showed basal cell hyperplasia, congested capillaries and eosinophils in the epithelium H x & E, x400	96
48	Columner metaplasia with goblet cells with no dysplasia (intestinal metaplasia) (Barrett' s esophagus) Hx&E x100	96
49	Higher view of the intestinal metaplasia with no dysplasia (Barrett's esophagus) Hx&E, x200	97
50	Barrett's esophagus with villous architecture and atypia indefinite for dysplasia Hx&E, x200	97
51	Barrett's esophagus with villous architecture and atypia indefinite for dysplasia, higher magnification of the previous image, Hx&E, x 400	98
52	Barrett's esophagus with villoglandular polyp showed variable degree of dysplasia Hx&E, x200	98

Fig.	Title	Page
53	Barrett's esophagus with villoglandular architecture and high grade dysplasia higher magnification of previous image Hx&E, x400	99

List of Diagram

Diagram	Title	Page
1	Sex distribution among the studied cases	62
2	Specimens types of the studied cases	64
3	Specimens site from the studied cases	65
4	Pathological diagnosis of the studied cases	66
5	Sex distribution among the SCC cases	68
6	Specimens sites from the SCC cases	70
7	Differentiation grades of the studied SCC specimens	72
8	T-grade of the segmental esophegectomy SCC specimens	74
9	N-grade of the segmental esophegectomy SCC specimens	74
10	Sex distribution among the adenocarcinoma cases	76
11	Specimens sites from the adenocarcinoma cases	79
12	Differentiation grades of the studied SCC specimens	80
13	T-grade of the segmental esophegectomy adenocarcinoma specimens	81
14	N-grade of the segmental esophegectomy adenocarcinoma specimens	82
15	Sex distribution among the studied Barret's cases	84
16	Differentiation grades of the studied Barret's specimens	87

Introduction

Esophageal cancer is diagnosed in about 400,000 patients per year, which makes it the ninth most common malignancy worldwide and sixth on the list of cancer mortality causes (*Peter and Siersema 2008*).

According to the National Cancer Institute, in the United States there were be approximately 17990 new cases and 15210 deaths in 2013. Despite many advances in diagnosis and treatment, the 5-year survival rate for all patients diagnosed with esophageal cancer ranges from 15% to 20% (*Pennathur A et al.*, 2013).

The epidemiology of esophageal cancer in developed nations has dramatically changed over the past forty years. Forty years ago squamous cell carcinoma (SCC) was responsible for greater than 90% of the cases of esophageal carcinoma in the United States. Adenocarcinoma has now become the leading cause of esophageal cancer in the United States, representing 80% of cases. In 1975 esophageal adenocarcinoma (EAC) affected four people per million, in 2001 the rate had increased to twenty-three people per million. Making it the fastest-growing cancer in United States, according to the National Cancer Institute (*Kyle J Napier et al., 2014*).

Esophageal squamous cell carcinoma (ESCC) is defined as a tumor in the squamous epithelium that lines the normal esophagus. Adenocarcinomas are tumors that are located at the interface of the distal esophagus and proximal stomach. The prognosis of esophageal cancer has slightly improved over the last few years in patients eligible to undergo a surgical resection; however, the 5-year survival rate in the resected group is still not higher than 30% to 35% (*Omloo JM et al*, 2007, Chang AC et al., 2008).