

TOWARDS LOW COST GREEN BUILDING WITH LOW ENERGY CONSUMPTION

Case study: North Sinai El-Arish

By

Marwa Nossier Hamdan Nossier

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for
the degree of

DOCTOR OF PHILOSOPHY IN ARCHITUREAL ENGINEERING

FACUKTY OF ENGINEERING - CAIRO UNIVERCITY

GIZA – EGYPT

TOWARDS LOW COST GREEN BUILDING WITH LOW ENERGY CONSUMPTION

Case study: North Sinai El-Arish

By

Marwa Nossier Hamdan Nossier El-Hamaida

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY

IN ARCHITURAL ENGINEERING

Prof.Dr. Hesham Sameh

Prof.Dr. Ayman Hassan

Professor of Architecture
Design, Faculty of Engineering,
Cairo University

Professor of Architecture
Design, Faculty of Engineering,
Cairo University

FACUKTY OF ENGINEERING - CAIRO UNIVERCITY

GIZA – EGYPT

Engineer's Name: Marwa Nosieer Hamdan Nosieer El-Hamaida

Date of Birth: 7/12/1987 **Nationality:** Egyptian

E-mail: Archmarwa1@gmail.com

Phone: 01280621601

Address: 4 El-Hamaida – El-shekh zewied – North Sinai

Registration Date: 1/10/2013

Awarding Date: 2017

Degree: Doctor of Philosophy

Department: Architectural Engineering

Supervisors:

Prof.Dr.Hesham Sameh.....(Thesis Main Advisor)

Prof.Dr. Ayman Hassan.....(Member)

Examiners:

Prof.Dr.Mohamed El-Hamshary..... (External Examiner)

(Professor of architecture and vice Dean of October high institute

for engineering and technology, 6 October city)

Prof.Dr.Mohamed Eweda.....(Internal Examiner)

Prof.Dr.Hesham Sameh.....(Thesis Main Advisor)

Prof.Dr. Ayman Hassan.....(Member)

Title of Thesis:

TOWARDS LOW COST GREEN BUILDING WITH LOW ENERGY CONSUMPTION (Case study: North Sinai El-Arish).

Key Words:

Economic Green Building; Green Building; External Envelop Construction; Energy Efficiency; Green Material.

Summary:

In this thesis has been focused on primarily cost of green building. The main element impact on primary cost is construction of the building. Additionally, decreasing the primarily cost of green building has been given attention to the energy consumption inside building and selecting the stabile material. Therefore, has been suggestion new construction system for green building made of plastic. Also, it has been tested the durability of it and studied ability use recycled plastic in the construction to save the environment. The cost of new block has been calculated and comparative with use traditional brick in the building. Additionally, it had been analyzed main geometric shapes which can decrease the total solar radiation on the external envelope of the building. The result approves that the cost of new construction lower than traditional building. Also, it helps on decrease heat transfer through the wall. Finally, the circle is satiable shape in Sinai building.

Acknowledgments

I acknowledge and thank the following individuals and organizations for their support of or participation in this research. Saudi Basic Industries Corporation (Sabic company) in Kingdom of Saudi Arabia for sharing their knowledge of the case studies. Jazan university for guidance and helping to achieve the company in Kingdom of Saudi Arabia. Science & technology center of excellence for helping in manufacture the new construction building (test blocks). Sinai university for performing testing in the laboratory of the university. The higher institute of engineering and technology in El-Arish for allowing to work in the lab. Egyptian international company for plastic (Sun Rise) for providing with information.

Table of Contents

Subject	Page
Dout 1. Foonomic groon building	
Part -1: Economic green building	
Chapter 1: Introduction	
Introduction:	1
Research problem:	4
Aims of the research:	4
The sub aims:	4
Hypothesis of the study:	5
Research methodology:	5
Major Findings:	6
Chapter 2 : Green building	
Introduction:	7
Green building:	8
The concept of green economy:	9
Green building attributes:	9
Green Building Goals	9
Green building barriers:	10
Several perceptions on green buildings:	12
Green Buildings Impact Value:	13
Economic green building:	14
The effect of green building benefits in cost:	14
Green buildings financial benefits:	17
Indirect Financial Benefits:	19
Strategies Savings by Design:	20
Role of Improvements Construction building in cost:	21
Impact of green sustainable building in Human Performance:	21
Barriers to Environmentally Sustainable Development:	22
Future directions:	22

Subject	Page
Rating system	23
Introduction	23
Benefits of building rating system:	24
Chapter 3 : Economic Green Building	
Economic:	25
Economic dimensions:	25
The issue of cost:	26
Factors affecting the cost of green buildings:	27
Financial Costs of green building:	27
Cost Factors:	29
Design:	29
Design cost factor:	29
Construction:	30
Construction Cost Factors:	30
Operation:	31
Operation Cost Factors:	32
Barriers to controlling cost:	33
Strategies for the reduction costs:	33
Strategies for the decrease of running and initial costs:	35
Strategies sustainable building costs:	35
Costs of Facility Maintenance and Repair:	36
Life cycle cost:	38
Definition:	38
Lifecycle Cost Savings:	40
Life Cycle Cost Assessment:	41

part -2: External envelope of green building

Chapter 4 : External envelope of green building

Building Envelope:	43
Introduction:	43
Design the building envelope:	45
Building envelope product and materials selection:	45
Air sealing and Insulation:	45
Embodied energy:	45
Windows, doors, and skylights:	46
Roofs:	46
Walls:	46
Envelope and Climate:	47
Climate Considerations:	48
Greenery role in nowadays architecture:	49
Building Shape and Orientation:	50
Thermal Efficiency:	50
Chapter 5: green walls & roof	
Green walls / roofs:	54
Green wall:	55
Construction of green wall:	55
walls types:	56
Costs of vertical greening systems:	58
Budget:	58
Benefits of vertical greening systems:	59
Energy saving:	60
Building protection:	61
Factors for Successful Green Facades:	61
Barriers to Green wall technology diffusion:	62

Green roof:	64
Green roofs types:	64
Green roofs layers:	66
Researchers suggested few characteristics of extensive green roof plants:	67
Green roof systems are committed to the following principles:	68
green roof benefits:	68
Green roofs and Energy saving:	70
Economic Benefits green roofs:	72
Barriers of installing green roofs:	73
part-3 : Energy & material green building	
Chapter 6: Energy Green Building	
Introduction energy:	75
Renewable Energy:	76
Renewable energy resources and technologies:	77
Energy-saving green buildings:	78
Energy and green building:	78
Strategies of energy-saving:	79
Design and Planning:	79
Building envelope:	79
Single design:	80
Evaluation of the device configuration:	80
The choice of energy-saving materials and products:	80
Use of renewable energy:	80
Power distribution and lighting system:	80
Strategies Energy Efficient in Building:	82
Passive Building:	83
Passive Solar Design:	84
Integrated and Passive Design Key to Energy-Conscious Buildings:	84

Subject

Page

Integrated Design Approach:	84
Passive Design:	85
Perceived Increased Costs:	85
Compressed Construction Schedules:	85
Excess Capacity of HVAC Systems:	85
Poor Quality of Commissioning:	86
Limited Expertise in Energy Efficiency:	86
Lack of Life-Cycle Cost Thinking:	86
Reduction of Verification System and Trusted Energy-Efficiency Rating:	86
Energy Cost Saving:	89
The effect of energy consumption in cost:	90
The benefits of reducing energy consumption:	91
Material and energy:	91
Chapter 7: Material Green Building	
Introduction material:	93
Requirements for materials:	93
Characteristics Green products and green building materials:	95
Green building material:	
Three phases to Building Materials:	97
Building Phase:	97
Building Phase:	98
Post-Building Phase:	98
Green building materials definition:	98
Criteria for materials selection:	99
Decrease materials:	100
Resource quantity:	100
Recycled content:	100
Local content and decrease transportation:	100

Subject

Page

Use and Renewability of sustainable management practices :	100
Regionally suitable materials:	101
Recycling and Resource recovery:	101
Maintenance requirements and Life-cycle cost:	101
Criteria and Forms of Evaluation Green Material:	102
Generally the major Criteria for assessing the construction materials:	102
pollution:	102
resources:	102
performance:	102
Green Products:	103
Definition of comparative environmental parameters:	103
Energy-Efficiency:	103
Resource Responsibility:	104
Public Health Impacts:	105
Economical and Functional Uses:	105
Quality of Manufacturer:	106
Recycling and reuse material of buildings:	107
Definition:	107
Benefits for reuse or recycling:	107
Barriers of using salvaged and recycled-content materials in construction:	108
Materials Cost Saving:	108
Using waste resources	108
Lower cost of compliance	108
Lower energy costs	109

Subject

Page

Subject Page

part-4: application & conclusion

Chapter 8 : Application using laboratory testing

Explain the new brick block (material, shape, dimension):	110
Introduction:	110
Properties of polypropylene:	110
New block brick from polypropylene:	111
Prove the durability of new brick	115
Calculate the compressive strength using rates:	115
The pervious study of using plastic in building construction:	115
Calculate the compressive strength, normal stress and shear stress of the shape:	120
Calculate the compressive strength using testing laboratory:	130
Application of plastic brick as a wall structure for green building:	130
The first phase - Preparing the brick to test:	130
The second phase - Compression test the brick:	136
Calculate the compressive strength for recycle plastic using testing laboratory:	140
Calculate the compressive stress for some samples of Recycled plastic we used every day:	140
Calculate the compressive stress for raw material of plastics which used in manufacturing the block:	144
Comparative the compressive stress of raw material with three samples of Recycled plastics:	145
Viewed the benefits of new brick:	147
properties to this design:	147
This brick does not need for material to connect bricks together	147
It does not require the demolition in case of the amendment	148
Color change easily during the manufacturing phase:	149
Ease of disassembly and installation:	149
It is hollowing from the inside and contains two pieces (the main block and the cover)	
Enable to get rid of the hot air before transformation through the wall:	