

MODELLING AND TRANSIENT ANALYSIS OF CAPACITOR SWITCHING CONNECTED TO ELECTRICAL WIND TURBINE SYSTEM USING SIMULINK SOFTWARE

By

Mohamed Salah Mahmoud Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

MODELLING AND TRANSIENT ANALYSIS OF CAPACITOR SWITCHING CONNECTED TO ELECTRICAL WIND TURBINE SYSTEM USING SIMULINK SOFTWARE

By

Mohamed Salah Mahmoud Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Mohamed Mamdouh Abdel Azi	z Prof. Dr. Hosam Kamal Mohamed
You	ssef
•••••	•••••
Electrical Power and Machines department	Electrical Power and Machines
department	
Faculty of Engineering - Cairo University	Faculty of Engineering - Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

MODELLING AND TRANSIENT ANALYSIS OF CAPACITOR SWITCHING CONNECTED TO ELECTRICAL WIND TURBINE SYSTEM USING SIMULINK SOFTWARE

By

Mohamed Salah Mahmoud Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Prof. Dr. Hosam Kamal Mohamed Youssef, Thesis advisor
Faculty of Engineering, Cairo University

Prof. Dr. Essam Eldien Mohamed Abo Al Zahab, Internal Examiner
Faculty of Engineering, Cairo University

Prof. Dr. Said Wahsh, External Examiner
Electronics Research Institute - Dokki

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

Engineer: Mohamed Salah Mahmoud Hussein

Date of Birth: 1 /11 /1984 **Nationality:** Egyptian

E-mail: salah_msmh@yahoo.com

Phone: 01007095294

Address: 7 st. Mahmoud Aref, Elshishini, Faisal, Gizal

Registration Date: 1 / 10 / 2009

Awarding Date: / /

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Hosam kamal Mohamed Youssef

Prof. Dr.Mohamed Mamdouh Abd Alaziz (God bless his soul)

Examiners: Prof. Dr. Said Abdelmoniem Wahsh (Electronics research center, Dokki)

Prof. Dr. Essam Mohamed Abo Elzahab Prof. Dr. Hosam kamal Mohamed Youssef

Title of Thesis:

Modelling and Transient Analysis of Capacitor Switching Connected to Electrical Wind Turbine System Using Simulink Software

Key Words:

Wind turbines, Power Quality, Transient Overvoltage, Zero-Crossing technique, Modeling and Simulations using Matlab

Summary:

The quality of electric power is very important topic. It has been a major topic of research due to problems, which result in case of poor power quality, which can cause heavy financial losses in different fields. One of the most important aspects of poor power quality is transient which is generated, among other cases, as a result of capacitor switching such as in wind turbine system. In this work the transient over voltage and inrush current resulted from capacitor switching are studied by building a model using matlab Simulink for wind turbine system. To eliminate the originated transients, the synchronous switching technique is used in this work. The simulation shows a significant decrease in the values of overvoltage and inrush current.

ACKNOWLEDGMENTS

I am exceedingly grateful to Allah who gave me the opportunity and ability to complete this thesis. My sincere acknowledgement goes to Prof.Dr. Hosam kamal my supervisor, who guided and supervised me during this study. His kindness, understanding, encouragement, and critically constructive discussions have supported me greatly and contributed to constructing and completing this thesis. I am also thankful to Prof.Dr. Mamdouh AbdelAziz, my co-supervisor, for his advice and comments, particularly in the early stages of this thesis, before his death.

I would like to thank my family for their words of great inspiration and encouragement. Also, I would like to thank all my colleagues for their support to me

DEDICATION

I dedicate this thesis

To

My Father & Mother
Salah Feryal

My Sisters Hoda Doaa

My Brother Ahmed

For their love, support and encouragement which make me able to get such success.

Table of Contents

ACKNOWLEDGMENTS	
DEDICATION	II
TABLE OF CONTENTS	111
LIST OF FIGURES	VI
LIST OF SYMBOLS AND ABBREVIATIONS	x
ABSTRACT	xIII
CHAPTER 1: INTRODUCTION	1
1.1 Thesis Motivation and Objectives	1
1.2 Renewable Energy	1
1.3 Various Forms of Renewable Energy	2
1.3.1 Hydro energy	2
1.3.2 Wind energy	3
1.3.3 Solar energy	3
1.3.3.1 Solar photovoltaics	3
1.3.3.2 Solar thermal system	4
1.3.4 Biomass energy	4
1.3.5 Tidal energy	5
1.3.6 Geothermal energy	5
1.3.7 Wave energy	6
1.3.8 Ocean energy	6
1.4 Thesis Layout	7
CHAPTER 2 : LITERATUE REVIEW	9
CHAPTER 3: WIND ENERGY	13
3.1 Introduction	13
3.2 Wind Energy Historical Background	13
3.3 Situation of Wind Power Worldwide	13
3.4 Status of Wind Power in Egypt	18
3.4.1 Production capacities of wind power in Egypt	
3.5 Wind Map in Egypt	19

3.6 Construction of Wind Turbine	24
3.7 Speed and Power Relations	26
3.8 Power Extracted from the Wind	27
3.9 Operation Control for Wind Turbines	29
3.9.1 Pitch control	29
3.9.2 Stall control	29
3.10 Start of Wind Turbines	30
3.11 Electrical Systems in Wind Turbine Generator Systems	30
3.11.1 Fixed speed wind turbine	31
3.11.2 Narrow speed range wind turbine	32
3.11.3 Wide speed range wind turbine	34
CHAPTER 4: CAPACITOR BANK SWITCHING DEVICES	35
4.1 Reactive Power	35
4.2 Reactive Power Compensation for Induction Generator	36
4.2.1 Self- excitation in SEIG	36
4.3 Sources of Reactive Power	39
4.3.1 Fixed capacitors	39
4.3.2 Switched capacitors	39
4.4 Power Quality	40
4.4.1 Transient overvoltage	41
4.5 Capacitor Bank Switching Devices	42
4.5.1 Circuit breakers with pre-insertion resistors	42
4.5.2 Circuit-switchers with pre-insertion inductor	43
4.5.3 Vacuum circuit breakers	
4.5.3.1 Vacuum circuit breakers construction	43
4.5.4 MOV arresters	44
4.5.5 Capswitcher	45

4.5.5.1 Features of capswitcher	.45
4.5.5.2 Advantages of capSwitcher	.46
4.5.6 Synchronous closing /zero- voltage crossing	.46
4.5.6.1 Operating principle of controlled switching	.48
4.5.6.2 Switching control sentinel	.50
4.5.6.2.1 Benefits	.50
4.5.6.3 Point on wave controller RPH2	.51
4.5.6.3.1 Main features	.52
CHAPTER 5: PROPOSED APPROACH AND TEST SYSTEM	54
5.1 Introduction	.54
5.2 Transient Analysis	.54
5.3 Test System Description	.56
5.4 The Proposed Approach of Analysis	.58
5.5 Introduction to Simpower System	.58
5.6 Calculations	.59
5.7 Simulation Results	.61
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	86
6.1 Conclusions	.86
6.2 Future Work	. 87
REFRENCES	88
APPENDEX A: system parameters	93

LIST OF FIGRUES

Figure 1.1. Biomass and bioenergy flow chart (Source: R.P. Overend, NREL, 2000 4
Figure 3.1 : Global annual installed wind capacity 1996-2014
Figure 3.2: Global cumulative installed wind capacity 1996-201415
Figure 3.3: Top 10 new installed capacity (Jan-Dec 2014)
Figure 3.4: Top 10 cumulative capacity (December 2014)
Figure 3.5: Egypt production capacities
Figure 3.6: Wind recourse map of Egypt : mean wind speed at 50 m a.g.l determined by mesoscale modeling (Wind Atlas for Egypt , 2006)20
Figure 3.7: Wind speed yearly average
Figure 3.8: Closer view for Zafrana and Gulf Alazyt21
Figure 3.9: Offshore wind resource map of Egypt: mean wind speed at 50 m a.g.l. determined by mesoscale modeling (Wind Atlas for Egypt, 2006) 22 Figure 3.10: Construction of wind turbine
Figure 3.11: Measured current from a stall-regulated (solid line) and a pitch-regulated (dotted line) wind turbine
Figure 3.12: Electrical system of a fixed-speed wind turbine
Figure 3.13: Electrical system of a variable-speed wind turbine equipped with a double-fed induction generator with a converter connected to the rotor circuit
Figure 3.14: Electrical system of a wind turbine equipped with controllable rotor resistances
Figure 3.15: Electrical system of a variable-speed wind turbine equipped with a Converter
Figure 4.1: Power triangle
Figure 4.2: Self excited induction generator
Figure 4.3: Voltage building phenomenon in SEIG
Figure 4.4: Effect of capacitances on voltage build up process

Figure 4.5: Classification of different power quality phenomena40
Figure 4.6: Construction of vacuum circuit breakers
Figure 4.7: Southern states capacitor switching device 15KV – 38KV45
Figure 4.8: Voltage corresponding to no-synchronous closing in a capacitor bank 47
Figure 4.9: Voltage corresponding to synchronous closing in a capacitor bank48
Figure 4.10: Block diagram of controlled switching system (controlled closing)49
Figure 4.11: Switching control sentinel (SCS)
Figure 4.12: Point on wave controller (RPH2)
Figure 5.1: Equivalent circuit for analyzing the transient generated by a back-to-
back Capacitor switching operation55
Figure 5.2: Single line diagram for wind turbine system
Figure 5.3: Test system model
Figure 5.4: Transient overvoltage observed near the capacitor bank
Figure 5.5: Inrush current observed near the capacitor bank
Figure 5.6: Transient overvoltage observed near the capacitor bank (phase B) 62
Figure 5.7: Transient overvoltage observed near the capacitor bank due to
synchronous switching63
Figure 5.8: Inrush current observed near the capacitor bank due to synchronous
switching64
Figure 5.9: Transient overvoltage observed near the capacitor bank (phase B) due to
synchronous closing64
Figure 5.10: Transient overvoltage observed near the capacitor bank (phase A) 65
Figure 5.11: Transient overvoltage observed near the capacitor bank due to
synchronous closing (phase A)65
Figure 5.12: Transient overvoltage observed near the capacitor bank (phase C) 66
Figure 5.13: Transient overvoltage observed near the capacitor bank due to
synchronous closing (phase C)

Figure 5.14:	Inrush current generated near the capacitor bank
Figure 5.15:	Transient overvoltage generated near the capacitor bank
Figure 5.16:	Transient overvoltage generated near the capacitor bank (Phase B) 69
Figure 5.17:	Transient overvoltage generated near the capacitor bank due to
	synchronous switching (phase B)
Figure 5.18:	Transient overvoltage generated near the capacitor bank due to
	synchronous switching
Figure 5.19:	Inrush current generated near the capacitor bank due to synchronous
	switching 71
Figure 5.20:	Transient overvoltage generated near the capacitor bank
	(phase A)
Figure 5.21:	Transient overvoltage generated near the capacitor bank due to
	synchronous switching (phase A)72
Figure 5.22:	Transient overvoltage generated near the capacitor bank
	(Phase C)72
Figure 5.23:	Transient overvoltage generated near the capacitor bank
	due to synchronous switching (phase C)
Figure 5.24:	Inrush current generated near the capacitor bank
Figure 5.25:	Transient overvoltage generated near the capacitor bank
Figure 5.26:	Transient overvoltage generated near the capacitor bank (phase B)75
Figure 5.27:	Transient overvoltage generated near the capacitor bank
	due to synchronous switching
Figure 5.28:	Transient overvoltage generated near the capacitor bank
C	due to synchronous switching (phase B)
Figure 5.29:	Inrush current generated near the capacitor bank due to synchronous
	switching77
Figure 5.30:	Transient overvoltage generated near the capacitor bank
-	(phase A)
Figure 5.31:	Transient overvoltage generated near the capacitor bank
	due to synchronous switching (phaseA)

Transient overvoltage generated near the capacitor bank (phase C) 7	9
Transient overvoltage generated near the capacitor bank	
due to synchronous switching (phase C)	9
Inrush current generated near the capacitor bank	1
Transient overvoltage generated near the capacitor bank	1
Transient overvoltage generated near the capacitor bank (phase B) 8	1
Transient overvoltage generated near the capacitor bank	
aronous switching8	2
Transient overvoltage generated near the capacitor bank	
due to synchronous switching (phase B)8	3
Inrush current generated near the capacitor bank due to synchronous	
switching8	3
Transient overvoltage generated near the capacitor bank	
(phase A)	4
Transient overvoltage generated near the capacitor bank	
due to synchronous switching (phase A)8	4
Transient overvoltage generated near the capacitor bank (phase C) 8	4
Transient overvoltage generated near the capacitor bank	
due to synchronous switching (phase C)8	5
	due to synchronous switching (phase C)