

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Experimental Investigation on The Performance of Vacuum Infused Composites

A thesis submitted in partial fulfillment of the requirement of the M.Sc in Mechanical Engineering

by

Ibrahim Hamdy Ali Moussa

B.Sc. in Design and Production Engineering, 2008

Supervised by

Prof. Hesham Sonbol

Associate Prof. Mostafa Shazly

Cairo-2016

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Experimental Investigation on the Performance of Vacuum Infused Composites

by

Ibrahim Hamdy

B.Sc. in Design and Production Engineering, 2008

EXAMINERS COMMITTEE

Name, Title and Affiliation	Signature
Prof.Yehia Ahmed Bahie El-Din	
Professor of Civil Engineering,	
Vice President for Research and Postgraduate Studies,	
The British University in Egypt	
Prof.Mohamed Hazem Abdel Lateef	
Professor of Production Engineering,	
Design and Production Engineering Department,	
Faculty of Engineering, Ain Shams University.	
Prof.Hesham Aly Abdel Hamed Sonbol	
Professor of Production Engineering,	
Head of Design and Production Engineering Department,	
Faculty of Engineering, Ain Shams University.	

TABLE OF CONTENTS

	STATEMENT	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
1.	Introduction	1
	1.1 The scope	2
2.	Literature Review	4
	2.1 Composite materials	4
	2.2 PMC Processes	4
	2.2.1 Hand Layup	4
	2.2.2 RTM	5
	2.2.3 Vacuum Assisted Resin Infusion (VARI)	6
	2.3VARI Defects	7
	2.3.1 Dry Areas	7
	2.3.2 Thickness gradient	9
	2.4 Composite Repair	10
	2.4.1 Exteral Patch Repair	10
	2.4.2 Scarf Patch Repair	14
	2.5 Flow Modeling	18
	2.5.1 Darcy's Law	18
	2.5.2 Permeability	18
3.	Experimental Work	20
	3.1Materials	20
	3.1.1 Reinforcing fabrics	20
	3.1.2 Resin	23
	3.2 VARI benchmark infusions	24

	3.3 Plates production using VARI	26
	3.3.1 First infusion	26
	3.3.2 Plates cutting	26
	3.3.3 Second infusion (re-infusion)	27
	3.4 Tension coupons preparation	28
	3.5 Tension test	29
	3.6 Physical and Mechanical Properties Calculation Procedure	31
4.	Results and Discussion	34
	4.1Effect of dry are re-infusion	34
	4.1.1 Repair and parent laminates of comparable quality	34
	4.1.1.1 Effect of re-infusion on the ultimate tensile strength	36
	4.1.1.2 Effect of re-infusion on failure location	39
	4.1.2 Repair laminates with better quality than parent laminates	41
	4.1.2.1 Effect of re-infusion on the ultimate tensile strength	43
	4.1.2.2 Effect of re-infusion on failure location	45
	4.2 Effect of vacuum pressure leak	47
5.	Flow Modeling and Simulation	49
	5.1 Introduction	49
	5.2 Permeability measurements	51
	5.2.1 Uni-axial 1D channel flow example	51
	5.2.2 Permeability results	54
	5.2.3 Results validation	55
	5.3 Case study: modeling and simulation for resin flow in 25.3 m wind	
	turbine blade	58
	5.3.1 Geometry and meshing	58
	5.3.2 Materials Properties	58
	5.3.3 Upwind zones	61
	5.3.4 Simulation Cases	63
	5 3 / 1 Case 1. Single Punner and Siv Feed Points	6/1

References	81
6. Conclusions	79
5.3.4.4 Case 4: Seven Runners and Thirty Two Feed Points	.75
5.3.4.3 Case 3: Five Runners and Twenty Six Feed Points	72
5.3.4.2 Case 2: Three Runners and Nineteen Feed Points	.68

STATEMENT

This thesis is submitted as partial fulfillment of M.Sc degree in mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree of qualification at any other scientific entity.

Signature

Ibrahim hamdy Moussa

ACKNOWLEDGEMENT

I would like to thank Allah for giving me the well to finish this study and I would like to express my sincere appreciation and thankfulness to my supervisors **Prof. Hesham Sonbol** and **Associate Prof. Mostafa Shazly** for their encouragement, support and advice to accomplish this work.

Special thanks to **Prof. Yehia Bahei-El-Din** the principal investigator for Project No. 1493 "Design and Fabrication of Rotor Blades for High Rate Wind Turbines" sponsored by Science and Technology Development Fund STDF through which the experimental study was made possible.

Many thanks to **Eng. Mostafa Bakir**, the head of Bakir Plastics and the consultant for the previous mentioned project for his guidance in learning vacuum infusion technique.

Special thanks to Centre for Advanced Materials (CAM) at the British University in Egypt and the Materials Laboratory at the British University in Egypt for the help to perform the experimental work in this thesis.

I am so grateful to my colleagues in **CAM**, Eng. Mohamed Osman, Eng. Ahmed Balah and Eng. Amir Abdelmawla and special thanks to Eng. Mohamed Mobarak.

Deepest gratitude to my father - may Allah have mercy on him- for giving me a good example to follow. Special thanks to my mother and my wife for their encouragement.

ABSTRACT

Composites are known to have superior strength to-weight ratio and excellent fatigue resistance compared to many traditional materials. They are especially preferred for the applications where weight savings are vital. Vacuum Assisted Resin Infusion (VARI) is one of the most commonly used fabrication processes in composite industry due to its ability to manufacture large scale, moderate cost products. However, some fabrication defects arise during VARI that needs to be investigated especially their effect on the mechanical properties structure integrity. Of particular, dry areas that appear at the end of infusion represents a critical defect that must be repaired prior to part deployment.

The present work explores the effect of a repair process using re-infusion approach of previously infused parts with dry areas. It presents results of an experimental investigation on the ultimate tensile strength of repaired (re-infused) and unrepaired (Intact) composite plates manufactured from glass fiber and epoxy.

In order to compare response of the re-infused and intact samples a number of tensile tests were performed for different types of reinforcing fabrics; non-crimp fabrics and woven roving. The results showed that re-infusion has a minor effect on the ultimate tensile strength particularly when the parent and repair laminates have almost the same quality. Based on visual inspection of intact samples, it is noted that each type of fabric has a typical dominant failure mode. For the re-infused samples, the properties of parent and repair laminates determine failure location.

The work also investigated the reasons for dry area formation during VARI and presented a methodology to prevent such defect using finite element analysis program "PAM-RTM". A 25.3 m long wind turbine blade was taken as a case study. Unlike structural finite element analyses where mechanical properties are essential, modeling infusion process requires physical properties such as permeability. Thus experimental tests were carried out to measure the permeability in x, y and z directions using 1D channel flow method. The permeability results were validated using "PAM-RTM". Small deviations were reported between experimental and numerical model.

LIST OF TABLES

Table 2-1: DCB test fracture toughness of intact and repaired samples [3]
Table 2-2: Ultimate Tensile Strength of intact and VARI scarf repaired samples [4]1
Table 3-1: Woven Roving WR600 areal weights [37]
Table 3-2: Types of noncrimp fabrics used
Table 3-3: Yarn characteristics
Table 3-4: Alardite 1564/ Aradur 3487 Resin System Properties
Table 3-5: Technical specifications of the universal testing machine
Table 3-6: ASTM Failure Codes
Table 4-1: Tensile results for intact and re-infused coupons of UNIE 1050M50 and ETXL1200 38
Table 4-2: Tensile results for intact and re-infused coupons of ETXT 900 and WR 6004
Table 4-3: Ultimate tensile strength results for two different series of ETXL 120048
Table 5.1: Flow front calculation based on the wet area at different times
Table 5.2: Permeability components for fabrics used
Table 5-3: Runners dimensions and feed points numbers in Case 3
Table 5-4: Runners dimensions and feed points numbers in Case 4

LIST OF FIGURES

Figure 2.1: Hand Layup method [7]	5
Figure 2.2: Resin Transfer Molding (RTM) [9]	5
Figure 2.3: Vacuum Assisted Resin Infusion (VARI) [10]	6
Figure 2.4: Dry areas in yacht infusion a) after the first infusion b) dry area re-infusion [17]	8
Figure 2.5: Thickness gradient development in VARI [19]	9
Figure 2.6: Vacuum Assisted Process (VAP)	9
Figure 2.7: VARI External Patch Repair Configuration [5]	10
Figure 2.8: Double Cantilever Beam DCB Test [24]	11
Figure 2.9: DCB test fracture toughness of vacuum infused repairs [5]	12
Figure 2.10: Bending Strength of intact and repaired samples by infusion and hand lay-up [3]	13
Figure 2.11: VARI scarf repair configuration [4]	15
Figure 2.12: VARI scarf repair of sandwich structures [30]	16
Figure 2.13: (a) Intact sandwich coupon and (b) repaired sandwich coupon [30]	16
Figure 2.14: Geometric parameters of adhesively bonded scarf repair specimen [31]	17
Figure 2.15: Adhesively bonded scarf repaired thick section plate [32]	18
Figure 2.16: Comparison between high and low permeability mediums [17]	19
Figure 2.17: Permeability components in principal directions	19
Figure 3.1: Schematic representations of common fabric weaves [36]	21
Figure 3.2: Noncrimp fabric orientations [38]	22
Figure 3.3: VARI consumables and accessories.	24
Figure 3.4: Experimental setup for VARI benchmark	25
Figure 3.5: First infusion of ETXL 1200	26
Figure 3.6: Sample cutting	27

Figure 3.7: Dry area re-infusion	27
Figure 3.8: ASTM requirements for coupon dimensions	28
Figure 3.9: Intact and re-infused coupons	28
Figure 3.10 Tension test a) universal testing machine b) tested coupon	29
Figure 3.11: Failure Modes and Codes [35]	30
Figure 4.1: Fiber volume fractions of intact and re-infused UNIE1050M50 and ETXL1200	34
Figure 4.2: Fiber volume fractions of parent and repair laminates for UNIE1050M50 and ETXL1200	35
Figure 4.3: Void contents of intact and re-infused UNIE 1050M50 and ETXL 1200	36
Figure 4.4: Ultimate Tensile Strength of intact and re-infused UNIE 1050M50 and ETXL 1200	37
Figure 4.5: Failure mode of uni-axial intact coupons	39
Figure 4.6: Failure mode of uni-axial re-infused coupons.	39
Figure 4.7: Failure code for ETXL 1200 intact coupons	40
Figure 4.8: First failure mode for tri-axial ETXL 1200 re-infused coupons	40
Figure 4.9: Second failure mode for tri-axial ETXL 1200 re-infused coupons.	41
Figure 4.10: Fiber volume fractions of intact and re-infused ETXT 900 and WR 600	41
Figure 4.11: Fiber volume fractions of parent and repair laminates for ETXT 900 and WR 600	42
Figure 4.12: Void contents of intact and re-infused ETXT 900 and WR600	42
Figure 4.13: Ultimate Tensile Strength of intact and re-infused ETXT 900 and WR 600	43
Figure 4.14: Failure mode for tri-axial ETXT 900 intact coupon	45
Figure 4.15: Failure locations for tri-axial ETXT 900 re-infused coupons (a) AGM (b) AWT	45
Figure 4.16: Second failure mode for tri-axial ETXT 900 re-infused coupons.	46
Figure 4.17: Failure mode for woven roving WR600 intact coupons	46
Figure 4.18: Failure mode for woven roving WR 600 re-infused coupons	47
Figure 4.19: Fiber volume fraction and void content for two different series of ETXL1200	48
Figure 5 1: PAM RTM Flow Chart	50

Figure 5.2 1D Channel Flow Method	51
Figure 5.3 Flow Front record	52
Figure 5.4 Flow front square versus time	53
Figure 5.5 UNIE 1050M50 permeability component K1	54
Figure 5.6 In-plane permeability components	55
Figure 5.7 PAM-RTM model for permeability validation	56
Figure 5.8 Comparison between simulation filling times and experimental results	57
Figure 5.9 Experimental and simulated flow fronts	57
Figure 5.10 Abaqus meshing for blade upwind half	58
Figure 5.21 Measurement of through thickness permeability component K3	59
Figure 5.12 Epolam 2040/2047 mixing viscosity versus time measured at 25°C [44]	60
Figure 5.13 Upwind half zones	62
Figure 5.14Upwind zones thickness	63
Figure 5.15 Sequential Feed [17]	63
Figure 5.16 Infusion strategy for case 1	64
Figure 5.17 The runner and feed point in a) reality[17] and b) simulation	64
Figure 5.18 Nodal Groups in Case 1	65
Figure 5.19 Simulation Start in case 1	66
Figure 5.20 Filling Pattern of Case 1 after 31 minutes	66
Figure 5.21 Comparison of Filling Patterns of Case 1 at different times	67
Figure 5.22 Isometric view for the end of filling in case 1	68
Figure 5.23 Infusion strategy for Case 2	69
Figure 5.24 Epolam 2040/2047 viscosity model for Case 2	69
Figure 5.25 Start of Filling in case 2	70
Figure 5.26 Filling Pattern of Case 2 after 31 minutes	71

Figure 5.27 Isometric view for the end of filling in Case 2	71
Figure 5.28 Infusion Strategy for Case 3	72
Figure 5.29 Epolam 2040/2047 viscosity model for Case 3	73
Figure 5.30 Opening of the first left runner L1 in Case 3.	74
Figure 5.31 Opening of the second right runner R2 in Case 3.	74
Figure 5.32 Isometric view for the end of filling in Case 3	75
Figure 5.33 Infusion Strategy for Case 4	76
Figure 5.34: Epolam 2040/2047 viscosity model for Case 4	77
Figure 5.35: Opening of the third right line (R3)	77
Figure 5.36: Opening of the fourth right line (R4)	78
Figure 5.37: Full impregnation.	78

Chapter 1 Introduction

Chapter 1 Introduction

1. Introduction

The use of composite materials has increased significantly in the past two decades in many fields such as: aerospace, marine, automotive industries and wind energy sector. This increase is primarily due to their enhanced properties such as high specific strength and stiffness and the flexibility to be tailored to meet specific multi-functionality.

While several techniques such as hand layup, Resin Transfer Mold (RTM) and Vacuum Assisted Resin Infusion (VARI) are among the common methods to fabricate composite panels and sandwich structures, VARI is known to produce good quality products at affordable cost especially in large products [1]. Vacuum assisted resin infusion (VARI) is considered an advanced technique for manufacturing theromset polymer matrix composites. It is based on loading dry fabric into a mold and then the resin is driven by a vacuum system. The resin is then infused into fabric voids and around it and left until cured. The vacuum system minimizes void content and gives higher quality than the conventional technique which is known as hand lay-up or wet-lay-up.

Dry spots or areas are considered as one of the most difficult problems that face vacuum infusion if not properly planned. They are usually repaired after the end of infusion using hand wetting or by a new infusion process referred here re-infusion. To avoid costly repair and material scrape of defected products, numerical simulation of VARI is used to predict the resin flow path and rate in different scenarios [2].

Consequently, re-infusion can be considered as a composite repair technique but without the presence of damaged material that needs to be replaced. A number of experimental and numerical studies on mechanical performance of repaired composites have been presented [3-5]. Atas *et al.* [3] have investigated the fracture toughness of composite plates repaired by either VARI or hand lay-up. It was shown that the reductions in fracture toughness of the repaired samples formed by VARI and hand lay-up are 42% and 67%, respectively. Tzetzis and Hogg [4] applied two scarf designs for the construction of post-repaired laminates using VARI. Both scarf designs have shown high repair efficiencies with dominant failure locations outside the scarf bonded region. The repairs showed a stiffer response than the parent laminates due to the local thickness increase generated from the application of the co-infused overlap.