بسم الله الرحمن الرحيم

(وَقُلِ اعْمَلُوا فَسَيرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتْرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ وَالْمُؤْمِنُونَ وَسَتْرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَالْمُؤْمِنُونَ وَسَتَرُدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَالْمُؤْمِنُونَ وَسَتَرُدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَا مُنْ وَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ وَالسَّلَهُ اللَّهُ وَالْمُؤْمِنُونَ وَسَتَرُدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ اللَّهُ وَاللَّهُ عَلَيْدِ اللَّهُ عَلَى اللَّهُ عَلَيْ اللَّهُ عَلَيْ اللَّهُ اللَّهُ اللَّهُ عَلَيْدِ اللَّهُ الْعُلْمُ اللَّهُ اللَّهُ الْعُلِيْلُونَ اللَّهُ اللَّهُ اللَّهُ الْعُلْمُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الْعُلْمُ اللَّهُ الْعُلِيْلُونَ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الْمُؤْمِ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللللْمُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللّهُ الللّهُ الللّهُ الللّهُ اللّهُ اللّهُ اللّهُ الللّهُ الللّهُ الللللّهُ الللّهُ الللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللل

صدق الله العظيم

أية مئة و خمسة من سورة التوبة

In vitro Assessment of the Antimicrobial Effect of Grapefruit-Seed Extract as an Endodontic Irrigant.

Thesis submitted To Endodontic Department Faculty Of Dentistry Ain-Shams University

For partial fulfillment of the requirements of Master degree in Endodontics

Submitted by

Basant Aly Yehia AbdelRahman

B.D.S., Faculty of Oral and Dental Medicine, Alexandria University, 2000

(2012)

Supervisors

Dr. Ahmed Abd El Rahman Hashem

Associate Professor of Endodontics, Faculty Of Dentistry, Ain-Shams University

Dr. Abeer Abdulhakeem Mahmoud

Lecturer of Endodontics, Faculty Of Dentistry, Ain-Shams University

Dr. Makram Fahmy Attalah

Lecturer of Medical Microbiology and Immunology,
Faculty of Medicine, Ain-Shams University

Acknowledgement

All praise and thanks be to **Allah**, the most Compassionate, the most Merciful.

I am proud to be supervised by *Doctor Ahmed*Abd El Rahman Hashem Associate Professor of Endodontics, Faculty of Dentistry, Ain Shams University, whom I thank for his inspiration, valuable guidance and for suggesting the main theme of the study.

I would like to express my sincere gratitude to *Doctor Abeer Abdulhakeem Mahmoud*, lecturer of Endodontics, Faculty of Dentistry, Ain Shams University, for her help, co-operation and helpful remarks during this study.

My deep appreciation to *Doctor Makram Fahmy Attalah* lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University for his effort and support throughout the study.

I dedicate my work

To My Precious Husband

To My Loving Parents

To My Sweet Children

Table of contents

1.	List of Tablesi
2.	List of Figuresii
3.	Introduction1
4.	Review of literature3
	1- Enterococcus faecalis biofilm3
	2- Antimicrobial efficacy of Traditional root canal irrigants.11
	3- Medicinal plants used as antibacterial agents31
5.	Aim of the study42
6.	Materials and Methods
	Materials43
	Methods44
	Statistical analysis50
7.	Results55
8.	Discussion
9.	Summary and conclusion89
10.	References92
11.	Appendix104
12.	Arabic summary

List of Tables:

<u>Table</u>	<u>Page</u>
Table 1:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of E. faecalis in the six
	groups at second sample56
Table 2:	The mean, standard deviation (SD) values and results of
14010 2 1	comparison between \log_{10} CFU of <i>E. faecalis</i> in the six
	·
	groups at third sample58
Table 3:	The mean, standard deviation (SD) values and results of
	comparison between log_{10} CFU of E. faecalis in the six
	groups at fourth sample60
Table 4:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of E. faecalis at different
	samples within saline group64
Table 5:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of E. faecalis at different
	samples within GSE 100% group
Table 6:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of <i>E. faecalis</i> at different samples within GSE50% group
Table 7 ·	The mean, standard deviation (SD) values and results of
Tuble 7 .	comparison between log_{10} CFU of <i>E. faecalis</i> at different
	samples within GSE25% group
Table 8:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of E. faecalis at different
	samples within Sodium hypochlorite 5.25% group66
Table 9:	The mean, standard deviation (SD) values and results of
	comparison between log ₁₀ CFU of <i>E. faecalis</i> at different
T-11- 10	samples within Chlorhexidine gluconate 2% group67
Table 10	: The mean, standard deviation (SD) values and results of comparison between % reduction in CFU of <i>E. faecalis</i> at
	second sample
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<b>Table</b>	11	:	The mean, standard deviation (SD) values and results of
			comparison between % reduction in CFU of E. faecalis at
			third
			sample71
<b>Table</b>	<b>12</b>	:	The mean, standard deviation (SD) values and results of
			comparison between % reduction in CFU of E. faecalis at
			fourth
			sample73

## List of Figures

<u>Figure</u> <u>Page</u>
F 1: SEM image, showing E.faecalis biofilm at 500x magnification53
F 2: SEM image showing E.faecalis biofilm at 2500x magnification53
F 3: SEM image showing E.faecalis biofilm at 5000x magnification54
F 4 : Photograph showing <i>E.faecalis</i> colonies on Tryptone-Soy agar plate
F 5: Histogram; Mean log ₁₀ CFU of <i>E.faecalis</i> at second sample
F 6: Histogram; Mean log10 CFU of E.faecalis at third sample
F 7: Histogram; Mean log10 CFU of E.faecalis at fourth sample
F 8: Line chart representing changes in mean log10 CFU of E. faecalis at different samples
F 9 : Histogram; Mean % reduction in CFU of E. faecalis at second sample
F 10 : Histogram; Mean % reduction in CFU of E. faecalis at third sample71
F 11: Histogram; Mean % reduction in CFU of E. faecalis at fourth sample
F 12: SEM image, showing E.faecalis biofilm after irrigation with GSE100% for 1min at 500x magnification75
F 13: SEM image, showing <i>E.faecalis</i> biofilm after 1min treatment with 100% GSE under magnification 2500x75 F 14: SEM image, showing E.faecalis biofilm after 1min treatment with Sodium hypochlorite 5.25% under magnification

500x76
image, showing E.faecalis biofilm after 1 min treatment with Sodium hypochlorite 5.25% under magnification 2500x
image, showing E.faecalis biofilm after 1 min treatment with chlorhexidine gluconate 2% under magnification 500x
image, showing E.faecalis biofilm after 1 min treatment with chlorhexidine gluconate 2% under magnification 2500x

The reduction or eradication of the bacterial population seems to be a justified goal during the course of root canal treatment. Elimination of endodontic infection is quite different from most other sites in the human body. This is mainly because of the special anatomy and physiology of the tooth and of the root canal. Irrigant solutions are used during mechanical instrumentation. The ideal irrigant should be able to kill bacteria, dissolve necrotic tissue, lubricate the canal, remove the smear layer and does not irritate the healthy tissues. Until this time no irrigant possesses all these properties.

Enterococcus faecalis (E.faecalis) is a facultative Grampositive coccus considered one of the most resistant & virulent strains of the oral cavity. Among it's virulence factors, it can compete with other organisms, invade dentinal tubules & resist nutritional deprivation. This bacterium is often present in persistent endodontic infections & failed endodontic cases. E.faecalis biofilm has been used to evaluate the antimicrobial efficacy of irrigants and root canal medications.

Grapefruit-seed extract (GSE®) is a commercially available substance that has received some attention for having antimicrobial properties. The manufacturer claims the

effectiveness of GSE includes successful treatment for dermatologic conditions such as dermatitis, warts, and poison ivy. GSE is made by first converting grapefruit seeds and pulp into an acidic liquid. This liquid is loaded with polyphenolic compounds or *Bioflavanoids*. Grapefruit-seed extract is considered to be effective against more than 800 bacterial and viral strains, 100 strains of fungus, and a large number of single and multi-celled parasites ⁽¹⁾. However, the efficiency of this substance as an endodontic irrigant is still unclear.

#### 1- Enterococcus faecalis biofilm.

Biofilm is a term, that designates the thin layered condensation of microbes (bacteria, protozoa and fungi) that may occur on various surface structures in nature. Free-floating bacteria existing in an aqueous environment, so-called *planktonic micro-organisms*, are a prerequisite for biofilm formation. Such films may become established on organic as well as inorganic surface substrates where planktonic micro-organisms prevail in water-based solution.

The earliest stage of biofilm formation involves the adsorption of *macromolecules*, from salivary proteins, to the surface, leading to the formation of a conditioning film. The second stage involves *adhesion and co-adhesion* of microorganisms and strengthening of the attachment through polymer matrix production. The third stage involves multiplication of attached micro-organisms that ultimately will result in a *structurally organized mixed microbial community*. During this stage the inherent characteristics of the micro-organisms and the nature of the micro-environment influence growth and succession of micro-organisms in the biofilm (2).

Biofilm formation in root canals, as hypothesized by Svensäter and Bergenholtz ⁽²⁾, is probably initiated at some time after the first invasion of the pulp chamber by planktonic oral

organisms after some tissue breakdown. At this point, the inflammatory lesion frontage that moves successively toward the apex will provide the fluid vehicle for the invading planktonic organisms so these can multiply and continue attaching to the root canal walls forming a biofilm.

Enterococcus faecalis, a gram positive, facultative coccus is the most implicated species in post-treatment disease ⁽³⁾. It lives in the human intestinal lumen and under most circumstances causes no harm to it's host as well as being a commensal of the oral cavity ⁽⁴⁾. Studies investigating its occurrence in root-filled teeth with periradicular lesions have demonstrated a prevalence ranging from 24 to 77% ⁽³⁾. In some cases, *E. faecalis* has been found as the only organism (monospecies) present in rootfilled teeth with periradicular lesions ^(5,6), and in mixed infections it is frequently the most dominant species ⁽⁷⁾.

Among it's virulence factors, *E.feacalis* can compete with other organisms, invade dentinal tubules & resist nutritional deprivation ⁽⁵⁾. *E.faecalis* possesses lytic enzymes, cytosine, aggregation substance and pheromones ⁽⁵⁾. It has even proven resistant to inter appointment medications including Calcium hydroxide ⁽⁸⁾, and to tetracycline irrigation ⁽⁹⁾.

Nair (10) was probably the first to identify biofilm structures in infected root canals in 1987. Using Transmission Electron Microscopy (TEM) the root canal contents of 33 teeth, to which periapical lesion was attached upon extraction, were examined. It was noted that the major bulk of organisms existed as 'loose collections' of cocci, rods, filaments and spirochetes. While most of these organisms appeared suspended, in what he felt was a moist canal space (*Planktonic phase*), dense aggregates were also observed sticking to the canal walls and forming thin to thick layers of bacterial condensations (Biofilm). Amorphous material filled the inter-bacterial spaces and was interpreted as an extra-cellular matrix of bacterial origin. When they occurred, the bacterial condensation showed a palisade structure similar to the one for dental plaque on external tooth surfaces, suggesting similar mechanisms for bacterial attachment as those for dental plaque.

**Haapasalo and Orstavik** (11) developed a model for in-vitro dentinal tubule infection. Cylindrical dentin specimens, 4 mm high with a diameter of 6 mm and a canal 2.3 mm wide, were prepared from freshly extracted bovine incisors. After removing the cementum the tubules were opened by 4min treatments with 17%EDTA and 5.25%NaOCl. The dentine blocks were autoclaved before being infected with *E.faecalis* for 3 weeks. SEM as well as histological staining and examination under the