

Ain Shams University Faculty of Engineering

Supply Chain Network Design

A Thesis

By

Yomna Mahmoud Sadek

M.Sc. Mechanical Design and Production Engineering

Submitted in partial fulfillment of the requirements of the degree of Ph.D. in Mechanical Engineering

Supervised by

Prof. Dr. Amin K. El-Kharbotly Dr. Nahid H. Afia

Statement

This thesis is submitted in the partial fulfilment of doctorate degree in Mechanical Engineering to Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other university.

Signature

Yomna Mahmoud Sadek

Examiners Committee

The undersigned certify that they have read and recommend to the Faculty of Engineering – Ain Shams University for acceptance a thesis entitled "Supply Chain Network Design", submitted by Yomna Mahmoud Sadek, in partial fulfillment of requirements for the degree of Philosophy of Doctorate in Mechanical Engineering.

Signature

Prof Dr. Yu Yang

Professor of Engineering and Managemant Science
Head of Industrial Engineering Departmnt
Mechanical Engineering College - Chongqing University

Prof Dr. Salah El-Din Abd El-Barr

Professor of Production Engineering
Faculty of Engineering - Ain Shams University

Prof Dr. Amin K. El-Kharbotly

Professor of Production Engineering
Faculty of Engineering - Ain Shams University

Acknowledgement

My very respectful and humble Professor Amin El-Kharbotly; I have always been so proud to be one of your students. For ten years now, I have been trying to learn from you how to be a professor, with all what the word means. I need not mention your valuable supervision; this is what everybody knows for years. You showed me that there is a lot more in guiding than just supervision.

Dr. Nahid Afia; After my M.Sc, I knew we could make a good working team. I am lucky to have such a cooperative supervisor. I am even luckier to have you as such a wonderful friend.

Dr. Mohammed El-Beheiry, and **Dr. Mohamed El-Sayed**; thank you for your time and effort during the discussions. This has always been the spirit among the members of Professor El-Kharbotly team.

My family; your endless love was a continuous support that I really needed. My parents, my sister, and my niece Sarah; I can never thank you enough. I don't think you helped me as much as you can. You were always doing more than what you can, and I am so grateful for that. My parents in law, I appreciate all your help in finishing this work. We all deserve a break now. My husband, my dearest sons Belal, Hesham, and Kareem; I dedicate this work to you.

Supply Chain Network Design Abstract

Supply chain management has recently gained a lot of interest. In their studies, researchers try to put assumptions that are close to real supply chain networks. In this research, the problem addressed is a supply chain network of three echelons, multiple products, of stochastic demand, with inventory accumulation over multiple planning intervals. A mathematical model was built to find the optimum decision of operating facilities and distributors. The problem is formulated in stochastic integer linear programming. The objective is to maximize the expected profit. The model was proven to be effective solving this problem. Such a problem was not tackled by many researchers due to its complexity, and big size. Further studies were made to decrease the size of the problem. It was made possible to decrease the computational time to about 40% of the original time while obtaining the same results. This percentage depends on the original size of the problem.

Experiments were carried out to study the effect of different parameters of the problem on the profit and the service level. Parameters studied were the fixed and variable costs, as well as the variance of the stochastic demand. The model was extended to feature bidirectional transshipment among distributors. Allowing transshipment between distributors has proven to be effective and profitable in some cases, depending on the three main parameters; the transshipment cost, the holding cost, and the transportation cost between facilities and distributors. Finally, the bullwhip effect at facilities was calculated for different cases of transshipment and inventory. Inventory and transshipment help to decrease the bullwhip effect at facilities under different scenarios through the same planning interval. On the other hand, they help to increase the variation in the production rate through different intervals.

Keywords: Supply chain, stochastic demand, location allocation, integer linear programming, multi-periods, multi-product, bidirectional transshipment

Summary of the Ph.D. Thesis "Supply Chain Network Design"

Supply Chain has recently raised a lot of interest in the research due to its effect on the profitability for all the supply chain network members. Researchers studied supply chains from different aspects. Some researchers were interested in strategic decisions, and supply chain design. Other researchers proposed methods to improve the performance of the network. Others were interested in just measuring the performance of the network under different conditions.

Many researchers studied supply chains under deterministic conditions. For the remaining who studied the supply chains under stochastic conditions, most of the research was held for a single product, or a single echelon, or a single planning interval. Limited research studied multi-echelon, multi-interval, multi-product stochastic supply chains. The most used method to design the supply chain was mathematical programming, like integer, and mixed integer linear programming, stochastic programming, and non-linear programming. Besides, some researchers modeled supply chains using different types of Petri Nets; like ordinary Petri Nets, stochastic Petri Nets, color Petri Nets, and complex-valued token Petri Nets. The literature on supply chain optimization has traditionally considered the decisions of operating facilities and distributors as strategic decisions in the supply chain design. On the other hand, it considered the flow of material from one stage to another as planning decisions.

In this thesis, strategic and planning decisions are integrated in designing supply chain networks. The problem addressed is a supply chain network of multi-echelon, multi-product, of stochastic demand, with inventory accumulation over multiple planning intervals. The network consists of three echelons; the facilities, the distributors, and the customers, allowing for inventory at distributors -if needed. A mathematical model was built to find out the optimum decisions of

operating facilities and distributors. The problem is formulated in stochastic integer linear programming. The objective is to maximize the expected profit. The same model was modified to allow inventory at facilities instead of distributors, while maximizing the expected profit. The model was further extended to feature bidirectional lateral transshipment among the distributors.

The proposed model was tested using some sets of problems that include different supply chain cost parameters. The parameters were the fixed costs of locations, the transportation costs, the production costs, the holding costs, and the shortage costs. Parameters governing the transshipment process were also tested. These parameters are the transshipment cost, the holding cost, and the transportation cost between facilities and distributors. The bullwhip effect due to transshipment was measured. Different supply chain structures were considered to facilitate the discussion of the results and easily interpret them.

Solving these problems showed the complexity of the design problem of supply chains of multi-echelon, multi- product under stochastic demand over multiple intervals. Due to the fact that the size of the problem is huge, it was required to simplify the problem. For example, a network of three facilities and three distributors dealing with three deterministic products over two planning intervals can be represented by integer linear programming of 189 variables subject to 135 constraints. In case of stochastic demand of only three discrete sections, the problem involves 35,721 scenarios. A heuristic based on pre-experimentations was built to reduce the number of scenarios.

The results obtained from solving these problems by the proposed model showed that the model is capable of solving the assigned problem. Results proved that by using the proposed heuristic, computational time can be shortened (down to about 40% of the original time), without losing the accuracy of the solution. The

results have proven to be near-optimal. The shortened computational time was found to depend on the original size and parameters of the problem.

Results also proved that there are inverse relations between the variable costs of the product as well as the fixed costs of locations, and the profit. Fixed costs of locations have no effect on the service level. All variable costs have inverse relations with the service level, except for the shortage cost which has a direct proportionality relation with the service level.

It was proven that transshipment between distributors can improve the performance of the supply chain, and be more profitable than direct transportation from the facilities to the distributors. As the transportation cost between facilities and distributors increases, the quantities transshipped increase. On the other hand, as the transshipment and the holding costs decrease, the quantities transshipped increase.

The bullwhip effect was measured for three cases of transshipment and inventory; with transshipment, without transshipment with inventory, and without transshipment without inventory. It was found that both inventory and transshipment help to decrease the bullwhip effect at facilities under different scenarios within the same planning interval. They also increase the variation in the production rate at facilities from one interval to another.

It was proven that supply chains operating under demands higher than their capacities face lower bullwhip effect than those operating under demands less than their capacities.

Table of Contents

Subject		Page
Abstract		V
Summary		VI
Table of Con	tents	IX
List of Tables	\mathbf{S}	XIII
List of Figure	es	XIV
Nomenclature		XVII
Chapter 1.	Introduction to Stochastic Supply Chain	1
	1.1. Introduction	1
	1.2. Supply chain definition	1
	1.3. Approaches to supply chain network design	2
	1.4. The approach in this research	3
	1.5. Organization of the thesis	4
Chapter 2.	Literature Review	5
	2.1. Introduction	5
	2.2. Decision phases in supply chains	5
	2.3. Deterministic supply chains	7
	2.4. Stochastic supply chains	9
	2.4.1. Approaches to deal with uncertainty	10
	2.4.2. Single echelon stochastic supply chains	11
	2.4.3. Single product stochastic supply chains	12
	2.4.4. Single planning interval stochastic supply chains	15
	2.4.5. Multi-echelon, multi-product, multi-interval	
	stochastic supply chains	16

Subject			Page
	2.5. Suppl	ly chains with lateral transshipment	22
	2.5.1.	Single echelon, single product	23
	2.5.2.	Two echelon, multi- product	23
	2.6. The b	pullwhip effect	24
	2.6.1.	Bullwhip effect measurement	25
	2.7. Findi	ngs and research objectives	26
Chapter 3.	The Propos	sed Model for Supply Chain Network Design	28
	3.1. Introd	luction	28
	3.2. Supp	ly chain network with inventory at distributors	28
	3.2.1.	Model description	28
	3.2.2.	Model assumptions and limitations	29
	3.2.3.	The objective function of the model	30
	3.2.4.	Model constraints	34
	3.2.5.	Procedure for stochastic demand	38
	3.3. Supp	ly chain network with inventory at facilities	43
	3.3.1.	Assumptions and limitations	43
	3.3.2.	Model objective function	45
	3.3.3.	Model constraints	49
	3.4. Supp	ly chain network with transshipment among	
	distri	butors	51
	3.4.1.	Assumptions and limitations	51
	3.4.2.	Model objective function	51
	3.4.3.	Model constraints	52
	3.5. Bully	whip effect measurement	55
	3.5.1.	Calculations at facilities	55
	3.5.2.	Calculations at the demand	56

Subject		Page
	3.6. Computerization of the model	57
Chapter 4.	Results and Discussion	58
	4.1. Introduction	58
	4.2. Examining different parameters of the problem	
	4.2.1. Cost of transportation between facilities and	
	distributors	59
	4.2.2. Cost of transportation between distributors	
	and customers	61
	4.2.3. The unit shortage cost	62
	4.2.4. The unit production cost at facilities	64
	4.2.5. Fixed costs of potential facilities	66
	4.2.6. Fixed costs of potential distributors	67
	4.2.7. The variance of the stochastic demand	68
	4.3. The effect of including fixed costs of facilities and	
	distributors	70
	4.4. Running selected scenarios	72
	4.5. Availability of transshipment between distributors	75
	4.5.1. The effect of the unit transshipment cost	75
	4.5.2. The effect of the unit holding cost	76
	4.5.3. The effect of the unit transportation cost	
	between facilities and distributors on the	
	transshipment process	77
	4.5.4. The effect of the transshipment cost on the	
	transshipped quantities	82
	4.5.5. The effect of the transshipment process on the	
	service level	83
	4.6. The bullwhip effect measurement	84

Subject							Page
4.6.1. I	Demand	mean	lower	than	the	network	
C	apacity						84
4.6.2. I	Demand r	nean eq	uals to t	the net	work	capacity	88
Chapter 5. Conclusions	and Reco	ommen	dations				97
5.1. Conclu	sions						97
5.2. Recom	mendatio	ons					99
References							100
Appendix A. Matlab 7 coding			107				
Appendix B. Data of some of the problems solved			114				
Arabic Summary				142			

List of Tables

No	Table	Page
2.1	Comparing the three decision phases of a supply chain	6
3.1	Amount of inventory at the beginning and end of each interval (τ)	47
4.1	Comparing the results of including and not including fixed costs	71
4.2	Groups of scenarios for $p1 = 0.1$, $p2 = 0.8$, $p3 = 0.1$	73
4.3	Comparing the results of running all scenarios and running selective scenarios	74
4.4	Comparing the results of transshipment at different values of F-D transportation cost.	81
4.5	Standard deviation values for different locations at different planning intervals.	87

List of Figures

No	Figure	page
1.1	Supply chain stages	2
2.1	Principle of the SBO method [10].	13
2.2	Three types of channel distribution system [13].	14
3.1	The proposed three-echelon network	29
3.2	Integer linear programming constraints matrix for $F=3$, $D=3$, $C=2$, $T=2$, $P=2$	39
3.3	Normal distribution of the demand with values and probabilities	40
3.4	Generating all scenarios and calculating their probabilities	41
3.5	A block diagram represents the procedure of the solution	44
3.6	Integer linear programming constraints matrix for $F=3$, $D=3$, $C=2$, $T=2$, $P=2$, with transshipment	54
4.1	The effect of the transportation cost between facilities and distributors on the profit.	54
4.2	The effect of the transportation cost between facilities and distributors on the service level	60
4.3	The effect of the transportation cost between distributors and customers on the profit.	61
4.4	The effect of the transportation cost between distributors and customers on the service level	62
4.5	The effect of the shortage cost on the profit.	63

No	Figure	page
4.6	The effect of the shortage cost on the service level.	64
4.7	The effect of the production cost on the profit.	65
4.8	The effect of the production cost on the service level	65
4.9	The effect of facility fixed cost on the profit	66
4.10	The effect of distributor fixed cost on the profit	67
4.11	The effect of the demand variance on the average of the sum of quantities held in the inventory	68
4.12	The effect of the demand variance on the profit	69
4.13	The effect of the demand variance on the service level	69
4.14	Scenarios for $p1 = 0.1$, $p2 = 0.8$, $p3 = 0.1$	73
4.15	The effect of unit transshipment cost on the profit at $(\mbox{Inv}_{\mbox{\scriptsize dp}}\!\!=\!\!3\%)$	76
4.16	The effect of unit transshipment cost on the profit at various values for the holding cost	78
4.17	The effect of unit transshipment cost on the profit (Inv $_{dp}$ =3%, TransFD $_{fdpt}$ =12.5%)	79
4.18	The effect of unit transshipment cost on the profit at different F-D transportation cost percentages	80
4.19	The effect of the F-D transportation cost on the profit at no transshipment	82
4.20	The effect of the F-D transportation cost on the minimum	
	transshipment cost at no transshipment	82