

Evaluation of the role of mixture of fish and corn oils in repression of induced Ulcerative colitis in rats

Thesis Submitted to Faculty of Science, Ain Shams University For Partial Fulfillment of Master degree of Science in Biochemistry

By

Dina El said Abd El Halim El Shazly

B.Sc. in Biochemistry and Chemistry (2008)
Faculty of Science
Ain Shams University

Under Supervision of

Prof. Dr. Eman I. Kandil

Professor of Biochemistry Faculty of science Ain Shams university.

Prof. Dr. Nashwa K. Ibrahim

Professor of Biochemistry National Center for Radiation Research and Technology Atomic Energy Authority.

Dr. Fatma S.M. Moawed

Lecturer of Biochemistry National Center for Radiation Research and Technology Atomic Energy Authority.

تقييم دور خليط كل من زيت السمك وزيت الذرة في تثبيط التهاب القولون التقرحي المستحث في الجرذان

رسالة مقدمة للحصول على درجة الماجيستير في العلوم كجزء مكمل لمتطلبات رسالة الماجيستير بكلية العلوم قسم الكيمياء الحيوية

دينا السعيد عبد الحليم الشاذلي

تحت اشراف

الأستاذ الدكتورة: نشوة كامل إبراهيم

أستاذ الكيمياء الحيوية المركز القومى لبحوث وتكنولوجيا الإشعاع هيئة الطاقة الذرية.

الدكتورة: إيمان ابراهيم قنديل أستاذ مساعد الكيمياء الحيوية كلية العلوم.

جامعة عين شمس.

الدكتورة / فاطمة سيد معوض مدرس الكيمياء الحيوية المركز القومى لبحوث وتكنولوجيا الإشعاع هيئة الطاقة الذربة.

الإهداء

الحمد لله حمدا كثيرا طيبا مبارك فيه سبحانك لا نحصي ثناءا عليك انت كما اثنيت على نفسك فلا حصر لنعمك ولا حدود لفضلك.

"سبحانك لا علم لنا الا ما علمتنا"

الى الرحمة المهداة ومعلم البشرية رسول الانام الى من بلغ الرسالة وأدى الأمانة ونصح الامه (سيدنا محمد صلى الله عليه وسلم)

الى من رباني على حب العلم والتعلم، الى من حفزني وساعدني، الى من الى من احمل اسمه بكل افتخار (والدي العزيز)

الى معنى الحب والعطاء والإخلاص، الى من ساندتني بالوقت والمجهود والدعوات، الى من اعطتني عمرها بحب وحنان، الى من كان دعانها ودعمها سر نجاحي وكلمات الاهداء لا تكفيها (امي الغالية)

الى من دعمني بالتقبل والحب والتحمل (زوجي الحبيب)

الى ووالده ووالدته اشكركم على دعمكم ودعواتكم

الى أخي واختي واصدقائي وكل من علمني حرفا

الى ابنائى نعمة ربى وسر سعادتى

Declaration

I declare that this thesis has been composed by me and it has not been submitted for a degree at this or any other university.

Dina El Said El Shazly

Acknowledgement

First, foremost, and all thanks to Allah by whose grace this work had been completed and by whose grace all my life is arranged in the best. Nobody can imagine this way that had been drawn by the mercifulness of Allah.

My deep thanks and gratitude to **Prof. Dr. Eman Ibrahim Kandil** Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for her precious guidance. I owe her more than I can express for all the time, she spent in revising every detail, in spite of her busy schedule. In fact, all credit goes to her in bringing this study to light.

It is great honor for me that I take this opportunity to express my sincere appreciation and my deep respect to **Prof. Dr. Nashwa K. Ibrahim** Professor of Biochemistry, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for her precious guidance. Without her generous and valuable assistance, this work would lose its value. It is an honor working under her supervision.

I would like to extend my thanks to **Dr. Fatma S.M. Moawed**Lecturer of Biochemistry, National Center for Radiation Research
and Technology (NCRRT), Atomic Energy Authority, for her
precious guidance. Without her generous and valuable assistance,
this work would lose its value. It is an honor working under her
supervision.

Contents

Contents	Page
Abstract	I
List of abbreviations	II
List of figures	IV
List of photos	VI
List of tables	VII
Introduction	1
Aim of the work	4
I. Review of literature	5
1- Inflammatory bowel disease	5
1.1. Epidemiology	5
1-2 Environmental risk factors for ulcerative colitis	6
1.3. Pathogenesis	11
1.3.1. Genetic features	11
1.3.2. Microbiological features	11
1.3.3. Immune response	12
1.4. Molecular signal pathway in Ulcerative colitis	14
1.5. Experimental ulcerative colitis in animal models	16
1.6. Complications of UC	19
1.7. Treatment	19

1.8. Polyunsaturated Fatty Acids in remission of UC	23
II. Materials and methods	30
1. Materials	30
1.1 Chemicals	30
1.2. Experimental animals	30
2. Methods	31
2.1. Induction of ulcerative colitis (UC)	31
2.2. Experimental design	31
2.3. Blood and tissue sample preparation	32
2.4. Biochemical parameters	34
2.4.a. Determination of myeloperoxidase enzyme (MPO) in colon tissue	34
2.4.b. Determination of alkaline phosphates (ALP) in serum	38
2.4.c. Determination of Tumor Necrosis Factor-α (TNFα) in colon tissue	40
2.4.d. Determination of intrlekin-10 (IL-10) in colon	44
2.5. Molecular Investigation	50
2.5.a. Detection of inducible nitric oxide synthase (iNOS)	
and nuclear factor kappa B (NF-κB) in colon by Real time	50
quantitative reverse transcription polymerase chain	50
reaction (qRT-PCR)	
2.6. Determination of signal transducer activator of transcription (STAT-3) in colon by western	53
immunoblotting	
2.7. Histopathological Examination	56

2.8. Statistical analyses	56
III. Results	57
IV- Discussion	83
Summary and Conclusion	99
V- References	102
Arabic summary	118
Arabic abstract	121

Abstract

Abstract

Excessive use of n-6 polyunsaturated fatty acids (PUFA) and inadequate n-3 PUFA in diet have been associated with enhancing risk for developing ulcerative colitis (UC). In rat models in different studies, n-3 PUFAs have been shown to attenuate colitis. However, little information is available concerning the in vivo effects of these fatty acids on different inflammatory mediators. The aim of this study was to examine the effect of fish and corn oils mixture (FO/CO) on dextran sodium sulfate (DSS)-induced colitis in rats. Anti-inflammatory activity was assessed by colonic myeloperoxidase (MPO) and serum alkaline phosphatase (ALP) activities. Expression of inflammatory related mediators including, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription (STAT-3) were also assessed. In addition, cytokines including, tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were evaluated. Our results demonstrated that administration of FO/CO mixture by ratio (2.5:1) for four weeks resulted in reduced TNF-α, ALP, iNOS, and MPO activities accompanied with an increase of IL-10 level. In addition, FO/CO mixture proved antiinflammatory properties by reducing the expression levels of transcription factors; NF-κB and STAT-3. Histopathological findings reinforced the obtained biochemical data.

List of abbreviations

AA	Arachidonic acid
ALA	Alpha-linolenic acid
ALP	Alkaline phosphatase
ANOVA	Analyzed Using One way analysis of Variance
APC	Antigen presenting cells
CD	Crohn's disease
CO	Corn oil
CLA	Conjugated Linoleic acid
COX	Cyclooxygenase
CRC	colorectal cancer
DC	Dendritic cells
DHA	Docosahexanoic acid
DNA	Deoxyribonucleic acid
DSS	Dextran sodium sulfate
ELIZA	Enzyme-linked immunosorbent assay
EPA	Eicosapentanoic acid
FO	Fish oil
GLA	γ -linolenic acid
IBD	Inflammatory Bowel Diseases
IL-10	Interleukin-10
iNOS	inducible nitric oxide synthase
JAK	Janus activated kinase
LA	Linoleic acid

LTB4	Leukotriene B4
LSD	Least significant difference
MCFA	Medium chain fatty acid
MPO	Myeloperoxidase
NF-ĸB	Nuclear factor-kappa B
NO	Nitric oxide
ω-3	Omega 3
ω-6	Omega 6
PCR	Polymerase chain reaction
PGE2	Prostaglandin E2
PUFA	Polyunsaturated fatty acids
r.p.m	Rounds per minute
ROS	Reactive oxygen species
RT-PCR	Reverse transcriptase real time polymerase chain reaction
STAT	Signal transducer and activator of transcription
TNF-α	Tumor necrosis factor alpha
TXA2	Thromboxane A2
UC	Ulcerative colitis

List of figures

Figure NO.	Title	Page
1	Various pathways involved in the pathogenesis of UC	15
2	Suggested mechanism of DSS action	18
3	n-3 and n-6 sources and metabolic pathway	22
4	Overview of the metabolism of ω-6 PUFAs	25
5	Summary of the anti-inflammatory actions of n-3 polyunsaturated fatty acids	27
6	Standard curve for MPO	38
7	Standard curve for TNF-α	44
8	Standard curve for IL-10	49
9	Percent change of MPO activity relative to control	59
10	Percent change of MPO activity relative to colitis	59
11	Percent change of ALP relative to control	62
12	Percent change of ALP relative to colitis	62
13	Percent change of TNF-α relative to control	65
14	Percent change of TNF-α relative to colitis	65
15	Percent change of IL-10 relative to control	68
16	Percent change of IL-10 relative to colitis	68

17	Percent change of iNOS relative to control	71
18	Percent change of iNOS relative to colitis	71
19	Percent change of NF-κB relative to control	74
20	Percent change of NF-κB relative to colitis	74
21	mRNA expression of NF-κB and iNOS expressed as relative quantification using quantitative RT-PCR analysis.	75
22	Percent change of STAT-3 relative to control	78
23	Percent change of STAT-3 relative to colitis	78
24	Western immunoblotting analysis of STAT-3 protein expression in colonic tissue	79

List of photos

Photo	Title	Page
1	Colon of rats in group 1 showing normal histological structure of mucosa (mu)	81
2	Colon of rats in group 2 showing multiple number of inflammatory cells infiltration in mucosa layer (mu) and underlying submucosa	81
3	Colon of rats in group 3 showing normal histological structure	82
4	Colon of rat in group.4 showing few inflammatory cells infiltration in mucosa	82