

Performance Evaluation of OFDM System Subjected to Frequency Offsets in General Fading Channels

A Thesis

Submitted in partial fulfillment for the requirements
Of the degree of Master of Science in Electrical Engineering
(Electronics and Communications Engineering)

Submitted by

Muhammad Ismail Muhammad

B.Sc. in Electrical Engineering Electronics and Communications Engineering Dept. Ain Shams University, 2007

Supervised by

Prof. Dr. Salwa Hussein El Ramly

Dr. Abdel Aziz M. Al Bassiouni

Electronics and Communications Engineering Dept.

Ain Shams University
Faculty of Engineering

Cairo 2009

Judgment Committee

: Muhammad Ismail Muhammad

Name

Tullic	. Wananinaa Isman Wananinaa		
Thesis	: Performance Evaluation of OFDM System Subjected		
	to Frequency Offset in General 1	Fading Channels	
Dograo	¥ *	•	
Degree : Master of Science in Electrical Engineering		gmeering	
Name, Titl	Name, Title and Affiliation Signature		
,			
D.CD.E.			
	nad Al-Deen Khalaf Al-Hussaini	•••••	
	d Communications Engineering Dept.		
Faculty of Eng	rineering, Cairo University		
Prof. Dr. Mo	hamed Marzok Ibrahim	••••	
Electronics and	d Communications Engineering Dept.		
	gineering, Ain Shams University		
, .	, <u> </u>		
Prof Dr Sal	wa Hussein El Ramly		
	d Communications Engineering Dept.	•••••	
	0 0 1		
racuity of Eng	ineering, Ain Shams University		
Dr. Abdel Az	ziz Mahmoud Al Bassiouni	••••	
Business Deve	lopment Director		
Teletech, Egypt.			
, -6,1			

Date: / /

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the department of Electronics and Communications Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or qualifications at any other university or institution.

Name : Muhammad Ismail Muhammad

Signature : Date :

Curriculum Vitae

Name of the researcher : Muhammad Ismail

Muhammad

Date of Birth : 20 - 11 - 1985

Place of Birth : Cairo

Nationality : Egyptian

First University Degree : B.Sc. in Electrical

Engineering

(Electronics and

Communications)

Faculty of Engineering, Ain Shams University.

Certification Date : July 2007

Name : Muhammad Ismail Muhammad

Signature :

Date :

Thesis Abstract

Muhammad Ismail Muhammad, "Performance Evaluation of OFDM System Subjected to Frequency Offset in General Fading Channels", Master of Science dissertation, Ain Shams University, 2009

Orthogonal frequency division multiplexing (OFDM) is a multicarrier transmission technique that has been recently recognized as an excellent method for high speed bi-directional wireless communications. It provides a good performance against the most severe multi-path propagation conditions.

OFDM is sensitive to frequency synchronization errors, which results in inter-carrier interference (ICI) and degrades system's performance.

This research work aims to investigate the combined effects of carrier frequency offset (CFO) and fading conditions on system's performance. Nakagami-m fading channel is used as a multi-path propagation model for its ability to emulate fading channels whose conditions are either less severe than, the same as, or more severe than the Rayleigh fading model.

Closed form expressions of BER/SER for OFDM system subjected to CFO over Nakagami-m fading channel are developed. The impact of CFO and severe fading conditions on performance is revealed.

CFO mitigation techniques are introduced to improve system's performance when subjected to CFO. Closed form BER/SER expressions are developed for polynomial cancelation coding (PCC)-OFDM and the ameliorated ICI cancelation OFDM when subjected to CFO in Nakagami-m fading channel, and system improvement is emphasized.

To combat the severe fading conditions, diversity reception is applied. Space diversity reception is employed at the receiver and maximum ratio combining (MRC) is used. The effect of correlation among diversity branches is considered. Expressions of BER/SER for PCC-OFDM subjected to CFO with diversity reception over Nakagami-m fading channel are developed, and in some cases expressions result in a closed form.

Acknowledgement

All praise and glory go to Almighty Allah who gave me the strength and patience to carry out this work.

First and foremost gratitude is to the esteemed university, Ain Shams University, and its faculty of engineering members for their high quality education they supplied me with through my undergraduate and postgraduate studies.

My deep appreciation and gratitude go to my thesis advisors professor Salwa El Ramly, and Dr. Abdel Aziz Al Bassiouni for their constant guidance, support and valuable time they supplied me with through my work in this thesis.

Many thanks and appreciations go to my dear parents, sister and friends for their prayers and encouragement they supplied me with through my two years of postgraduate studies. Special thanks to my dear friend Moustafa Kohail for helping me with the presentation.

CONTENTS

LIST OF FIGURES	.xi
LIST OF SYMBOLS	xiv
LIST OF ABREVIATIONS	xv
CHAPTER 1 - INTRODUCTION	
1.1. The Need for OFDM	1
1.2. Evolution towards OFDM	2
1.2.1. Single Carrier Modulation System	2
1.2.2. Multi Carrier Transmission 'FDM'	2
1.2.3. Orthogonal Frequency Division Multiplexing	3
1.3. Problem Statement and Thesis Contributions	4
1.4. Thesis IEEE Publications	5
1.5. Thesis Overview	5
CHAPTER 2 – OFDM AND COMMUNICATION	ON
CHANNEL FUNDAMENTALS	
2.1. Introduction	
2.2. OFDM Fundamentals	
2.2.1. SCs Orthogonality	
2.2.1.1. How to Achieve SCs Orthogonality	
2.2.1.2. Orthogonality in Time Domain	
2.2.1.3. Orthogonality in Frequency Domain	
2.2.2. OFDM Signal	
2.2.3.1. Historical View	
2.2.3.2. System Modification – The Introduction	
IFFT/FFT	
2.3. Communication Channel Fundamentals	
2.3.1. Fading Phenomena.	
2.3.2. Types of Communication Channels Based	
Fading	
2.3.3. Narrow Band Channels (Flat Fading)	
2.3.4. Wide Band Channels	
2.4. OFDM in Communication Channels	
2.4.1. OFDM Attractive Features	
2.4.2 OFDM System Structure	

2.4.3. OFDM Drawbacks	25
2.5. Conclusion	
CHAPTER 3 - CFO PROBLEM IN	OFDM
SYSTEMS	28
3.1. Introduction	
3.2. CFO Problem Formulation	
3.3. CFO Mitigation Techniques	
3.3.1. CFO Estimation Techniques	
3.3.1.1. Data Aided Techniques	
3.3.1.2. Non Data Aided Techniques	
3.3.1.3. Blind Techniques	
3.3.2. CFO Reduction Techniques	
3.3.2.1. Windowing Techniques	
3.3.2.2. ICI Cancelation Techniques	38
3.3.3. CFO Mitigation Techniques Conclusion	
3.4. Performance Evaluation in Absence of Fading	
3.5. Performance Evaluation in General Fading (Channel –
The MGF Approach	46
3.6. Conclusion	49
CHAPTER 4 – PERFORMANCE EVALUAT	TION IN
GENERAL FADING CHANNEL	50
4.1. Introduction	
4.2. Exact Analysis of Conventional OFDM System	Subjected
to CFO over Nakagami-m Fading Channel	50
4.2.1. BPSK Modulation	50
4.2.1.1. Conditional Probability of Error	51
4.2.1.2. The Average Probability of Error over N	Nakagami-
m Fading Channel	
4.2.2. QPSK Modulation	
4.2.2.1. Conditional Probability of Error	
4.2.2.2. The Average Probability of Error over N	
m Fading Channel	71
4.3. Exact Analysis of PCC- OFDM System Subject	
over Nakagami-m Fading Channel	
4.3.1. The Sufficient Statistics Used in the Decision	
PCC-OFDM Receiver	
4.3.2. BPSK Modulation	
4.3.2.1. Conditional Probability of Error	82

4.3.2.2. The Average Probability of Error over Nak	kagami-
m Fading Channel	88
4.3.3. QPSK Modulation	
4.3.3.1. Conditional Probability of Error	95
4.3.3.2. The Average Probability of Error over Nak	kagami-
m Fading Channel	100
4.4. Exact Analysis of Ameliorated ICI Cancelation	OFDM
System Subjected to CFO over Nakagami-m	Fading
Channel	
4.4.1. The Sufficient Statistics Used in the Decision R	ule of
Ameliorated ICI Cancelation OFDM Receiver	
4.4.2. BPSK Modulation	
4.4.2.1. Conditional Probability of Error	
4.4.2.2. The Average Probability of Error over Nak	
m Fading Channel	
4.4.3. QPSK Modulation	
4.4.3.1. Conditional Probability of Error	
4.4.3.2. The Average Probability of Error over Nak	
m Fading Channel	
4.5. Conclusion	122
CHAPTER 5 - DIVERSITY RECEPTION OF ()FDM
SYSTEMS	123
5.1. Introduction	123
5.2. Introduction to Diversity Reception	123
5.2.1. The Diversity Concept	123
5.2.2. The Diversity Techniques	124
5.2.2.1. Space Diversity	
5.2.2.2. Frequency Diversity	124
5.2.2.3. Time Diversity	
5.2.3. The Diversity Combining Methods	
5.2.3.1. Pure Combining Methods	
5.2.3.2. Hybrid Combining Methods	127
5.2.4. The Impact of Fading Correlation	
5.2.4.1. Dual Correlation Model	
5.2.4.2. Constant Correlation Model	
5.2.4.3. Exponential Correlation Model	
5.3. Diversity Reception of PCC-OFDM	
5.3.1. Diversity Reception of PCC-OFDM Subje	
CFO with Uncorrelated MRC Branches	
5.3.1.1. BPSK Modulation	131
5.3.1.2. QPSK Modulation	

5.3.2. Diversity Reception of PCC-OFDM	Subjected to
CFO with Correlated MRC Branches	142
5.3.1.1. BPSK Modulation	143
5.3.1.2. QPSK Modulation	147
5.4. Conclusion	150
CHAPTER 6 – THESIS CONCLUSION &	FUTURE
WORK	151
6.1. Thesis Conclusion	151
6.2. Thesis Contributions	152
6.3. Future Work	153
REFERENCES	154

LIST OF FIGURES

Fig 1.1 FDM and OFDM SCs
Fig 2.1 SCs in Time Domain
Fig 2.2 OFDM Spectrum8
Fig 2.3 Simple OFDM Structure9
Fig 2.4 FFT/IFFT in OFDM System11
Fig 2.5 Multipath Fading Environment
Fig 2.6 Signal Time Dispersion
Fig 2.7 ISI
Fig 2.8 Nakagami PDF for $\Omega = 1$ and different m
Fig 2.9 Cyclic Prefix in OFDM22
Fig 2.10 OFDM Block Diagram24
Fig 3.1 CFO Problem in OFDM28
Fig 3.2 The OFDM Symbol34
Fig 3.3 The Spectrum of OFDM Symbol around NSC36
Fig 3.4 Cost Function $J(\omega)$ with Multiple Minima36
Fig 3.5 ICI Coefficient, N = 6440
Fig 3.6 Higher Order Cancelation41
Fig 4.1 OFDM-BPSK; CFO = 0.1; BER vs. E_b/N_o 55
Fig 4.2 OFDM-BPSK; Different CFO; BER vs. E _b /N _o 56
Fig 4.3 OFDM-BPSK; E _b /N _o =10dB; BER vs. CFO57
Fig 4.4 OFDM-BPSK; CFO = 0.1; BER vs. E_b/N_o ; Different m 62
Fig 4.5 OFDM-BPSK; Different CFO; BER vs. E _b /N _o ; Half
Gaussian Channel63
Fig 4.6 OFDM-BPSK; E _b /N _o =10dB; BER vs. CFO; Half Gaussian
Channel
Fig 4.7 OFDM-BPSK; Different CFO; BER vs. E_b/N_o ; Rayleigh
Channel
Fig 4.8 OFDM-BPSK; $E_b/N_o=10dB$; BER vs. CFO; Rayleigh
Channel
Fig 4.9 OFDM-QPSK; Different CFO; SER vs. E _b /N _o 70
Fig 4.10 OFDM-QPSK; $E_b/N_o=10dB$; SER vs. CFO71
Fig 4.11 OFDM-QPSK; CFO = 0.1; SER vs. E_b/N_o ; Different
<i>m</i>
Fig 4.12 OFDM-QPSK; Different CFO; SER vs. E_b/N_o ; Half
Gaussian Channel 77

Fig 4.13 OFDM-QPSK; E _b /N _o =10dB; SER vs. CFO; Half Gaussian
Channel
Fig 4.14 OFDM-QPSK; Different CFO; SER vs. E _b /N _o ; Rayleigh
Channel
Channel
Channel80
Fig 4.16 OFDM BPSK with and without Cancellation – BER vs. at
Different CFO86
Fig 4.17 OFDM BPSK with and without Cancellation – BER vs.
CFO at $E_b/N_o = 10dB$ 87
Fig 4.18 OFDM BPSK with and without Cancellation - BER vs.
E_b/N_o ; CFO = 0.1; Different m 91
Fig 4.19 OFDM BPSK with and without Cancellation – BER vs.
E _b /N _o at Different CFO; Half Gaussian Channel92
Fig 4.20 OFDM BPSK with and without Cancellation - BER vs.
CFO at E _b /N _o =10dB; Half Gaussian Channel93
Fig 4.21 OFDM BPSK with and without Cancellation - BER vs.
E _b /N _o at Different CFO; Rayleigh Channel94
Fig 4.22 OFDM BPSK with and without Cancellation – BER vs.
CFO at E _b /N _o =10dB; Rayleigh Channel95
Fig 4.23 OFDM QPSK with and without Cancellation – SER vs.
E_b/N_o at Different CFO99
Fig 4.24 OFDM QPSK with and without Cancellation – SER vs.
CFO at $E_b/N_o = 10dB$
Fig 4.25 OFDM QPSK with and without Cancellation - SER vs.
E_b/N_o ; CFO = 0.1; Different m
Fig 4.26 OFDM QPSK with and without Cancellation – SER vs.
E _b /N _o at Different CFO; Half Gaussian Channel104
Fig 4.27 OFDM QPSK with and without Cancellation – SER vs.
CFO at $E_b/N_o = 10$ dB; Half Gaussian Channel
Fig 4.28 OFDM QPSK with and without Cancellation – SER vs.
E _b /N _o at Different CFO; Rayleigh Channel106
Fig 4.29 OFDM QPSK with and without Cancellation – SER vs.
CFO at $E_b/N_o = 10dB$; Rayleigh Channel
Fig 4.30 OFDM BPSK with and without Cancellation – BER vs.
E_b/N_o at CFO = 0.1; Ameliorated & PCC-OFDM
Fig 4.31 OFDM BPSK with and without Cancellation – BER vs.
E_b/N_o at CFO = 0.1; Different m ; Ameliorated & PCC-OFDM114
Fig 4.32 OFDM QPSK with and without Cancellation – SER vs.
E_b/N_o at CFO = 0.1; Ameliorated & PCC-OFDM

Fig 4.33 OFDM QPSK with and without Cancellation – SER vs. E_b/N_o at CFO = 0.1; Different m ; Ameliorated & PCC-
OFDM121
Fig 5.1 PCC-OFDM BPSK; BER vs. E_b/N_o at CFO = 0.1; Dual
Diversity; Distinct Fading & Distinct E _b /N _o 134
Fig 5.2 PCC-OFDM BPSK; BER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Half Channel
Fig 5.3 PCC-OFDM BPSK; BER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Rayleigh Channel
Fig 5.4 PCC-OFDM QPSK; SER vs. E_b/N_o at CFO = 0.1; Dual
Diversity; Distinct Fading & Distinct E _b /N _o 140
Fig 5.5 PCC-OFDM QPSK; SER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Half Channel141
Fig 5.6 PCC-OFDM QPSK; SER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Rayleigh Channel142
Fig 5.7 PCC-OFDM BPSK; BER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Correlated Half Guassian; Channel145
Fig 5.8 PCC-OFDM BPSK; BER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Correlated Rayleigh Channel146
Fig 5.9 PCC-OFDM QPSK; SER vs. E_b/N_o at CFO = 0.1; L Branch
Diversity; Correlated Half Guassian; Channel148
Fig 5.10 PCC-OFDM QPSK; SER vs. E_b/N_o at CFO = 0.1; L
Branch Diversity; Correlated; Rayleigh Channel149

LIST OF SYMBOLS

N	Number of SCs
$ au_{RMS}$	RMS Delay Spread
f_{d}	Doppler Frequency Shift
m	Nakagami-m Parameter
${\cal E}$	Normalized CFO
S(i)	ICI Coefficient
P_{be}	Bit Error Probability
P_{se}	Symbol Error Probability
γ	E _b /N _o (Bit Energy to Noise Spectral Density)
$M_{\gamma}(x)$	Moment Generating Function of γ
Q(x)	Gaussian Q Function
n(k)	Additive White Gaussian Noise
$\phi(\omega)$	Characteristic Function
σ^2	Noise Variance
$\Gamma(x)$	Gamma Function
$_{2}F_{1}(a,b;c;d)$	Guasshypergeometric Function
L	Number of Diversity Branches
ρ	Correlation Coefficient

LIST OF ABBREVIATIONS

ADSL Asymmetric Digital Subscriber Line AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying Code Division Multiple Access CDMA **CFO** Carrier Frequency Offset Characteristic Function **CHF** Digital Audio Broadcasting DAB DFT Discrete Fourier Transform DVB Digital Video Broadcasting **Equal Gain Combining EGC**

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform
GA Gaussian Approximation

GSC Generalized Switched Combining

ICI Inter-Carrier Interference

IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
ISI Inter-Symbol Interference
LOCZ Location of Channel Zeros

LOS Line of Sight

MGF Moment Generating Function
MLE Maximum Likelihood Estimation
MRC Maximum Ratio Combining

NSCs Null Subcarriers

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak to Average Power Ratio
PCC Polynomial Cancelation Coding
Pdf Probability Density Function
PSAM Pilot Symbol Assisted Modulation

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying

RF Radio Frequency RMS Root Mean Square

SCs Subcarriers

SCC Symmetric Cancelation Coding

SER Symbol Error Rate

SINR Signal to Interference plus Noise Ratio