

NON-LINEAR ANALYSIS OF SINGLE COUPLED SHEAR WALLS SUPPORTED ON COLUMNS

By

Amir Abd Elfadeel Esmaeil Ghanem

B.SC. Civil Engineering 2010

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2016

NON-LINEAR ANALYSIS OF SINGLE COUPLED SHEAR WALLS SUPPORTED ON COLUMNS

By

Amir Abd Elfadeel Esmaeil Ghanem

B.SC. Civil Engineering 2010

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed El-said Issa

Ass. Prof. Dr. Naser Fekry Hasan
EL Shafey

Professor of Concrete structures
Structural Engineering Department
Faculty of Engineering, Cairo University

Associated professor
Structural Engineering Department
Faculty of Engineering, Cairo University

Dr. Heba M. El-said Issa

Assistant professor Reinforced Concrete Institute Housing & Building National Research Center

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2016

NON-LINEAR ANALYSIS OF SINGLE COUPLED SHEAR WALLS SUPPORTED ON COLUMNS

By

Amir Abd Elfadeel Esmaeil Ghanem

B.SC. Civil Engineering 2010

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Approved by the examining Committee:

Prof. Dr. Omar Aly Mousa El-Nawawy

Professor of Reinforced concrete structures - Structural Engineering Department Faculty of Engineering - Ain Shams University

Prof. Dr. Mohamed Talaat Mostafa

Professor of Concrete structures - Structural Engineering Department Faculty of Engineering - Cairo University

Prof. Dr. Mohamed El-said Issa

Professor of Concrete structures - Structural Engineering Department Faculty of Engineering - Cairo University

Ass. Prof. Dr. Naser Fekry Hasan EL Shafev

Associated professor - Structural Engineering Department Faculty of Engineering - Cairo University

Dr. Heba M. El-said Issa

Assistant professor - Reinforced Concrete Institute Housing & Building - National Research Center

> FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Amir Abd Elfadeel Esmaeil Ghanem

Date of Birth: 14 / 11 / 1988 **Nationality:** Egyptian

E-mail: amirabdelfadeel@gmail.com

Phone: 01006286835

Address: Kafr elzayate -Tanta- Egypt

Registration Date:1 / 3 / 2013Awarding Date:..../..../......Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Mohamed El-said Issa

Professor of Concrete structures - Faculty of Engineering - Cairo University

Ass. Prof. Dr. Naser Fekry Hasan El shafey

Associated professor - Faculty of Engineering - Cairo University

Dr. Heba M.El-Said Issa

Assistant professor - Reinforced Concrete Institute Housing & Building - National Research Center

Examiners:

Prof. Dr. Omar Aly Mousa El-Nawawy

Professor of Reinforced concrete structures - Faculty of Engineering - Ain Shams University

Prof. Dr. Mohamed Talaat Mostafa

Professor of Concrete structures - Faculty of Engineering - Cairo University

Prof. Dr. Mohamed El-said Issa

Professor of Concrete structures - Faculty of Engineering - Cairo University

Ass. Prof. Dr. Naser Fekry Hasan El shafey

Associated professor - Faculty of Engineering - Cairo University

Dr. Heba M.El-Said Issa

Assistant professor - Reinforced Concrete Institute Housing & Building - National Research Center

Title of Thesis:

NON-LINEAR ANALYSIS OF SINGLE COUPLED SHEAR WALLS SUPPORTED ON COLUMNS

Key Words:

Coupled shear walls supported on columns; Seismic loads; Anon- linear static analysis; finite elements, ANSYS (14) software.

Summary:

Coupled shear walls supported on columns used to resist the lateral loads in high rise building, when the total horizontal length not needed in ground floors, because architectural reasons such as parking requirements. The objective of this research was to observe deflection, propagation of cracking through the whole structural elements of the system in both elastic and post-elastic range, and to study a non- linear finite element analysis with variation in characteristic strength, reinforcement ratio for whole structural elements of the system, and the stiffness of columns with respect to stiffness of wall. Non-linear finite elements program "ANSYS 14", used to study the behavior of 18 samples from coupled shear walls system. The results are reported as effect of characteristic strength, stiffness ratio between column and wall, and reinforcement ratio on the ultimate horizontal load capacity, Maximum drift of the system at top point, Yielding drift of the system at top point, Yielding load capacity of the system, load of first shear cracks, Load of first flexural cracks, and Ductility.

ACKNOWLEDGMENTS

To Allah, everything in life is resumed. In this work he has helped me a lot and offered me what I did not know and what I have to know. Allah is the first and the last. Then, those offered by Allah to advise and guide have to be thanked.

Foremost, I would like to express my sincere thanks and deepest gratitude to my thesis advisor **Assistant Professor Dr. Naser El shafey** for his continuous supervision, valuable guidance, suggestions and time throughout the study period. Without his inspiration and intellectual stimulation, this study would have never been completed. Moreover, I appreciate **Professor Dr. Mohamed El Said Issa, Dr. Heba M. El Said Issa** for their suggestions.

I extend my deepest gratitude to my wife Hagar, and my mother, for their encouragement and valuable support to complete this study. Without their valuable support, this study would not have been successful. Thanks are also to my brothers Mohamed, Esmaeil, and my sister Amira for their patience to live gracefully in my absence during this study.

Amir Abd <u>F</u>lfadeel 2016

TABLE OF CONTENTS

AKNO	OWLEDGMENTSI	
TABL	E OF CONTENTSI	Ι
LIST (OF FIGURESV	7
LIST (OF TABLESX	XX
	RACTX	
	TER (1) INTRODUCTION	1
	Background	1
	Research objective and scope	3
1.3	Thesis organization.	4
CHAP	TER (2) PREVIOUS WORKS	5
2.1	Introduction	5
2.2	Behavior of ordinary shear walls	5
2.3	Behavior of coupled shear walls	6
		8
2.5	Past studies on coupled shear walls supporting on columns	11
2.6	Summary	13
СНАР	TER (3) NON-LINEAR FINITE ELEMENT ANALYSIS	14
3.1	Introduction	14
		14
	·	14
	3.2.2 Finite element model	14
		15
	**	15
	3.2.2.1.2 Link 8-3D	17
	3.2.2.2 Material Models	18
	3.2.2.2.1 Concrete in compression	23
	3.2.2.2.2 Concrete in Tension	24
	3.2.2.2.3 Reinforcement in Tension	24
	3.2.2.2.4 Bond between Concrete and Reinforcement	25
	3.2.2.3 Solution planning	25
	11 6	25
	3 2 2 3 2 Loading	26

	3	3.2.2.3.3 Newton-Raphson method for Analysis	26
	3.2.2.4	Geometry of coupled shear walls supporting on columns by	
	ANSYS		28
3.3	Case study		30
	3.3.1 Geom	etry of the model	30
	3.3.1.1	Overall dimension of the system	30
	3.3.1.2	Vertical and horizontal loads	31
	3.3.1.3	Buckling and Reinforcement ratio.	. 32
3.4	Validation o	f software	36
	3.4.1 Calcu	lation for (kαH)	36
	3.4.2 Calcu	lation of drift at point (A) using differential equation	37
	3.4.3 Calcu	lation of drift at point (A) using finite element program	
	"ANSYS14"	,,	. 38
	3.4.3.1	Case (1) when the first crack occurred, and compared to case of gross	S
		second moment of inertia for walls.	. 38
	3.4.3.2	Case (2) at the end of elastic stage, and compared to case of 35% of g	gross
		second moment of inertia for walls	39
CHAI	PTER (4) PA	RAMETRIC STUDY	41
4.1.	Introduction	1	41
4.2.	Dimensions	And Parameters	41
		ription and material properties	
		ing	
		onditions and loading	
	•	oost-elastic range	
	-	finitions	
4.8.	. Finite Eleme	ent results	. 50
		one result	
	4.8.1.1	Sample (1) results	51
		Sample (2) results	60
	4.8.1.3	Sample (3) results	66
	4.8.1.4	Sample (7) results	. 72
	4.8.1.5	Sample (8) results	. 78
	4.8.1.6	Sample (9) results	. 84
	4.8.1.7	Sample (13) results	. 90
	4.8.1.8	Sample (14) results	. 96
		Sample (15) results	
	4.8.1.10	Group one summary	108
		two results	112
			112
	4.8.2.2	Sample (5) results	118

Practi	ce	ninary Straining Actions of Coupled Shear Walls System	
APPE		======================================	
REFE		llation for Vertical and Horizontal Loads using Egyptian Cod	194 e of
		ons for future works	
		ons for design engineers	
5.3		······································	
5.2	Summary		189
5.1	Introduction		189
CHAP	TER (5) SUMI	MARY AND CONCLUSION	. 189
	4.8.3.4 Pe	osition of crushed zone in the coupled shear walls system	187
		ffect of reinforcement ratio	
	4.8.3.2 E	ffect of stiffness ratio between column and wall (tc/tw)	179
	4.8.3.1 E	ffect of characteristic strength (fcu)	175
	4.8.3 Summar	y for the main results	174
	4.8.2.10 C	Group two summaries	. 170
		ample (18) results	
		ample (17) results	
		ample (16) results	
		ample (12) results	
		ample (11) results.	
		mple (6) resultsample (10) results	
	4 8 / 3 8	mnie (n) recilie	

LIST OF FIGURES

Figure 1.1: Wall, precast concrete, New Zealand [1]	1
Figure 1.2: Types of shear walls according to overall dimensions	2
Figure 1.3: Coupled shear walls supported on columns [2]	3
Figure 2.1: Model for axially concentric shear wall "Smith and Coull (1991)"	8
Figure 2.2: Model for axially eccentric shear wall "Smith and Coull (1991)"	9
Figure 2.3: Model for shear walls and frames joined by beams "Smith and Coull (1991)"	9
Figure 2.4: Finite element models for different structural elements "Smith and C (1991)"	
Figure 2.5: Finite element model for coupled shear walls supported on columns "Khaled (2004)"	
Figure 3.1: "SOLID65" 3-D reinforced concrete solid element	.16
Figure 3.2: "SOLID65" 3-D stress output.	16
Figure 3.3: "LINK8-3D" element bars.	. 17
Figure 3.4: Models for reinforcement in reinforced concrete elements	18
Figure 3.5: Multi-linear isotropic stress-strain curve for concrete In compression (EPC of 203-2007 [3])	
Figure 3.6: Multi-linear isotropic stress-strain curve for concrete in compression (A Code)	ACI- 21
Figure 3.7: Typical stress-strain curves for concrete in compression	23
Figure 3.8: Idealized stress-strain curve for concrete in compression.	. 23
Figure 3.9: Idealized stress-strain curve for steel	. 24
Figure 3.10: Load steps, sub-steps, and time	. 26
Figure 3.11: Incremental "Newton-Raphson" procedure	27
Figure 3.12: Traditional "Newton-Raphson" method vs. arc-length method	27
Figure 3.13-a: 3D-shape of reinforcement without concrete element	.28
Figure 3.13-b: 2D-shape of reinforcement without concrete element	. 29
Figure 3.14: 3D-model for coupled shear wall supporting on columns	29
Figure 3.15: Plan of a case study	30

Figure 3.16: Elevation of coupled shear walls supporting on columns	31
Figure 3.17: Final horizontal and vertical loads applied on coupled shear wall system	32
Figure 3.18: Coupled shear walls system in elevation with different sections number	33
Figure 3.19: Shape of reinforcement in elevation for collection one of reinforcement	35
Figure 3.20: Equivalent horizontal load affected on coupled shear walls system	36
Figure 3.21: Maximum deflection of point (a) when first cracks occurred.	39
Figure 3.22: Maximum deflection of point (a) when yielding of main reinforcement transfer beam	for 10
Figure 4.1: Finite element meshing that used in modeling (selected concrete element removed to illustrate internal reinforcement).	
Figure 4.2: Boundary conditions as a fixed support.	15
Figure 4.3: Horizontal and vertical loads at each node	46
Figure 4.4: Idealized stress-strain relationship for steel reinforcement.	47
Figure 4.5: Idealized stress-strain relationship for concrete.	47
Figure 4.6: Typical moment-curvature relationship for reinforced concrete flexus member	ral 50
Figure 4.7: Position of first flexural cracks for sample (1)	52
Figure 4.8: Yielding of main reinforcement for transfer beam, sample (1)	52
Figure 4.9.a: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (lower part)	
Figure 4.9.b: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (upper part)	
Figure 4.10.a: Beginning of yielding for RFT for sample (1)	54
Figure 4.10.b: Yielding for all RFT for sample (1)	54
Figure 4.11.a: Vector plot of principle stresses for sample (1)-(lower part)	55
Figure 4.11.b: Vector plot of principle stresses for sample (1)-(upper part)	55
Figure 4.12: Forming of expected first plastic hinge for sample (1)	56
Figure 4.13.a: Crack pattern at failure load for sample (1)-(lower part)	56
Figure 4.13.b: Crack pattern at failure load for sample (1)-(upper part)	57
Figure 4.14: Maximum drift at top point for sample (1).	57
Figure 4.15.a: Yielding of column reinforcement for sample (1)	58

Figure 4.15.b: Yielding of horizontal reinforcement of walls for sample (1)
Figure 4.16: Load-deflection curve at top point for sample (1)
Figure 4.17: Position of first flexural cracks for sample (2)
Figure 4.18: Yielding of main reinforcement for connecting beam, sample (2)
Figure 4.19.a: Beginning of first shear cracks, propagation of flexural cracks for sample (2) (lower part)
Figure 4.19.b: Beginning of first shear cracks, propagation of flexural cracks for sample (2) (upper part).
Figure 4.20.a: Beginning of yielding for RFT for sample (2)
Figure 4.20.b: Yielding for all RFT of connecting beams for sample (2)
Figure 4-21.a: Vector plot of principle stresses for sample (2)-(lower part)
Figure 4.21.b: Vector plot of principle stresses for sample (2)-(upper part)
Figure 4.22: Forming of expected first plastic hinge for sample (2)6
Figure 4.23.a: Crack pattern at failure load for sample (2)-(lower part)
Figure 4.23.b: Crack pattern at failure load for sample (2)-(upper part)
Figure 4.24: Maximum drift at top point for sample (2)
Figure 4.25: Yielding of column reinforcement and stirrups of transfer beam for sample (2)
Figure 4.26: Horizontal reinforcement of walls and columns not yielding at failure load for sample (2)
Figure 4.27: Load-deflection curve at top point for sample (2)
Figure 4.28: Position of first flexural cracks for sample (3)
Figure 4.29: Yielding of main reinforcement for conjunction between column and wall sample (3)
Figure 4.30.a: Beginning of first shear cracks, propagation of flexural cracks for sample (3) (lower part)
Figure 4.30.b: Beginning of first shear cracks, propagation of flexural cracks for sample (3) (upper part)
Figure 4.31: RFT of connecting beams not yielding at failure load for sample (3) 68
Figure 4-32.a: Vector plot of principle stresses for sample (3)-(lower part)
Figure 4.32.b: Vector plot of principle stresses for sample (3)-(upper part)

Figure 4.33: Forming of expected first plastic hinge for sample (2)
Figure 4.34.a: Crack pattern at failure load for sample (3)-(lower part)
Figure 4.34.b: Crack pattern at failure load for sample (3)-(upper part)
Figure 4.35: Maximum drift at top point for sample (3)
Figure 4.36: Yielding of column reinforcement and stirrups of transfer beam at failure load for sample (3).
Figure 4.37: Horizontal reinforcement of walls and columns not yielding at failure load for sample (3)
Figure 4.38: Load-deflection curve at top point for sample (3)
Figure 4.39: Position of first flexural cracks for sample (7)
Figure 4.40: Yielding of main reinforcement for transfer beam, sample (7)
Figure 4.41.a: Beginning of first shear cracks, propagation of flexural cracks for sample (7) (lower part)
Figure 4.41.b: Beginning of first shear cracks, propagation of flexural cracks for sample (7) (upper part)
Figure 4.42.a: Beginning of yielding for reinforcement of connecting beams for sample (7)
Figure 4.42.b: Yielding for reinforcement of connecting beams for sample (7)
Figure 4-43.a: Vector plot of principle stresses for sample (7)-(lower part)
Figure 4.43.b: Vector plot of principle stresses for sample (7)-(upper part)
Figure 4.44: Forming of expected first plastic hinge for sample (7)
Figure 4.45.a: Crack pattern at failure load for sample (7)-(lower part)
Figure 4.45.b: Crack pattern at failure load for sample (7)-(upper part)
Figure 4.46: Maximum drift at top point for sample (7)
Figure 4.47: Beginning yielding of column reinforcement for sample (7)
Figure 4.48: Yielding of concentrated reinforcement of wall for sample (7)
Figure 4.49: Horizontal reinforcement of walls yielding at failure load for sample (7) 76
Figure 4.50: Load-deflection curve at top point for sample (7)
Figure 4.51: Position of first flexural cracks for sample (8)
Figure 4.52: Yielding of main reinforcement for connecting beam (8), sample (8)

Figure 4.53.a: Beginning of first shear cracks, propagation of flexural cracks for sample (8 (lower part)	3) - 79
Figure 4.53.b: Beginning of first shear cracks, propagation of flexural cracks for sample (8 (upper part)	3) - 79
Figure 4.54: Beginning of yielding for reinforcement of connecting beams for sam (8).	ple 80
Figure 4.55: Yielding for reinforcement of connecting beams for sample (8)	80
Figure 4-56.a: Vector plot of principle stresses for sample (8)-(lower part)	80
Figure 4.56.b: Vector plot of principle stresses for sample (8)-(upper part)	80
Figure 4.57: Forming of expected first plastic hinge for sample (8)	81
Figure 4.58.a: Crack pattern at failure load for sample (8)-(lower part)	81
Figure 4.58.b: Crack pattern at failure load for sample (8)-(upper part)	81
Figure 4.59: Maximum drift at top point for sample (8)	81
Figure 4.60: Yielding of column reinforcement at failure load for sample (8)	82
Figure 4.61: Yielding of concentrated wall reinforcement for sample (8)	82
Figure 4.62: Yielding for stirrups of transfer beam for sample (8)	82
Figure 4.63: All horizontal reinforcement not yielding at failure load for sample (8)	82
Figure 4.64: Load-deflection curve at top point for sample (8)	83
Figure 4.65: Position of first flexural cracks for sample (9)	85
Figure 4.66: Beginning yielding for conjunction between column and wall for sam (9)	ple 85
Figure 4.67.a: Beginning of first shear cracks, propagation of flexural cracks for sample (9 (lower part)	9) - 85
Figure 4.67.b: Beginning of first shear cracks, propagation of flexural cracks for sample (9 (upper part)	9) - 85
Figure 4.68: Horizontal reinforcement state at failure load for sample (9)	86
Figure 4.69: Beginning of yielding for reinforcement of connecting beams and stirre column for sample (9)	-
Figure 4-70.a: Vector plot of principle stresses for sample (9)-(lower part)	86
Figure 4.70.b: Vector plot of principle stresses for sample (9)-(upper part)	86
Figure 4.71: Forming of expected first plastic hinge for sample (9)	87

Figure 4.72.a: Crack pattern at failure load for sample (9)-(lower part)	87
Figure 4.72.b: Crack pattern at failure load for sample (9)-(upper part)	87
Figure 4.72.c: Crack pattern after failure load for sample (9)-(lower part)	87
Figure 4.73: Maximum drift at top point for sample (9)	88
Figure 4.74: Yielding of distributed wall reinforcement for sample (9)	88
Figure 4.75: Yielding for stirrups of transfer beam for sample (9)	88
Figure 4.76: Load-deflection curve at top point for sample (9)	89
Figure 4.77: Position of first flexural cracks for sample (13)	91
Figure 4.78: Yielding of main reinforcement for transfer beam, sample (13)	91
Figure 4.79.a: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (lower part)	3) - 91
Figure 4.79.b: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (upper part)	3) - 91
Figure 4.80: Beginning of yielding for RFT for sample (13)	92
Figure 4.81: Yielding for all RFT of coupling beams for sample (13)	92
Figure 4-82.a: Vector plot of principle stresses for sample (13)-(lower part)	92
Figure 4.82.b: Vector plot of principle stresses for sample (13)-(upper part)	92
Figure 4.83: Forming of expected first plastic hinge for sample (13)	93
Figure 4.84.a: Crack pattern at failure load for sample (13)-(lower part)	93
Figure 4.84.b: Crack pattern at failure load for sample (13)-(upper part)	.93
Figure 4.85: Maximum drift at top point for sample (13)	93
Figure 4.86: Yielding of column reinforcement for sample (13)	94
Figure 4.87: Horizontal reinforcement state at failure load for sample (13)	94
Figure 4.88: Load-deflection curve at top point for sample (13)	95
Figure 4.89: Position of first flexural cracks for sample (14)	97
Figure 4.90: Yielding of main reinforcement for connecting beam num. (5), sam (14)	nple 97
Figure 4.91.a: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (lower part)	4) - 97
Figure 4.91.b: Beginning of first shear cracks, propagation of flexural cracks for sample (1 (upper part)	4) - 97