A Study on Tumor Suppressor Genes Mutations Associated with Different Pathological Colorectal Lesions.

Thesis

Submitted for partial fulfillment of the requirements for the Ph.D. degree of Science in Biochemistry

By Salwa Naeim Abd El-Kader Mater M.Sc. in Biochemistry, 2002

Biological Applications Department Nuclear Research Center Atomic Energy Authority

Under the supervision of

Prof. Dr. Amani F.H Nour El-Deen

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Mohsen Ismail Mohamed

Professor of Clinical Pathology Biological Applications Department Nuclear Research Center Atomic Energy Authority

Prof. Dr. Abdel Hady Ali Abdel Wahab

Professor of Biochemistry and Molecular Biology Cancer Biology Department National Cancer Institute Cairo University

Dr. Azza Salah Helmy

Assistant Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

دراسة على الطفرات في الجينات المثبطة للأورام المصاحبة لإصابات القولون و المستقيم.

جزء متمم للحصول على درجة الدكتوراه قسم الكيمياء الحيوية ـ كلية العلوم جامعة عين شمس

رسالة مهدمة من سلوى نعيم عبد القادر مطر ماجستير العلوم في الكيمياء الحيوية (2002م)

تحت إشراف

أ.د /عبدالهادي على عبدالوهاب أستاذ الكيمياء الحيوية والبيولوجيا الجزئية قسم بيولوجيا الأورام معهد الأورام القومي - جامعة القاهرة

> د / عزة صلاح حلمي أستاذ مساعد الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم ـ جامعة عين شمس

ادر أماني فاروق حسين نور الدين أستاذ الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم - جامعة عين شمس

1.د/ محسن إسماعيل محمد أستاذ الباثولوجيا الإكلينيكية شعبة تطبيقات النظائر المشعة مركز البحوث النووية ـ هيئة الطاقة الذرية

قســـــم الكيمياء الحيويــة كليــــة العلـــوم جامعــة عيــــن شمس 2011

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients \(\leq 40 \) years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumorgenesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (GI) Cancerous group, (GII) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (GIII) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD). Purified DNAs which were extracted from the tissue samples, PCR amplified and subjected to the following examinations: 1- Detection of KLF6 mutations by using SSCP-silver staining technique and DNA sequencing by using BigDye Terminator v3.1Cycle Sequencing kit using Biosystem automated sequencer (The ABI PRISM 3100 Genetic Analyzer). 2- Determination of Loss of heterozygosity (LOH) on chromosome 10p15 regions (KLF6-locus) by using three microsatellite markers which includes KLFM1, KLFM2, and KLFM4. Data from the present study could be summarized as follows: In GI, 55.3% of cases had abnormalities in KLF6 gene (mutations and LOH). LOH was detected in 29% of investigated samples while KLF6 mutations were detected in 44% of cases. In GII, 57% of cases had abnormalities in KLF6 gene (mutations and LOH). LOH was detected in 55% of investigated samples while mutations of KLF6 gene were detected in 26% of investigated samples. In GIII, 50% of samples had abnormalities in KLF6 gene (mutations and LOH). LOH was detected in 36.4% of investigated samples while mutations of KLF6 gene were detected in 27.3% of investigated samples. Most of the mutations reported were of the missence and /or Transversion type and were almost in exon 2. In conclusion, our data highlight for the first time a role of KLF6 gene in the progression of Egyptian colorectal carcinogenesis where the results suggest that KLF6 gene alteration is involved in the progression of Egyptian colorectal carcinogenesis from both sporadic adenomatous polyps and ulcerative colitis pathways. Detecting mutational sites differing from that detected in western populations may be a characteristic of Egyptian CRC due to environmental and genetic factors. The detections of such genetic abnormalities may also be used as a marker for the early uncovering of colon cancer cases. It is recommended that those who have pre-neoplastic colon lesions in which the KLF6 gene has mutated or lost its heterozygosity should experience more frequent colonoscopic examinations for the detection of doubtful malignant changes. The present study also paves the way to further research needed to elucidate the possible role of KLF6 protein in the transactivation of other genes involved in cell cycle regulations and apoptosis. It also supports the possibility of using KLF6 gene as a target for gene therapy in colorectal cancer.

List of Abbreviations

ACF aberrant crypt foci AFP Alpha Fetoprotein AP adenomatous polyps

APC Adenomatous polyposis coli gene

APS Ammonium persulfate

bp Base pair

BTEB1 basic transcription factor element binding proteinBTEB2 basic transcription factor element binding protein 2

CD Crohn's disease

CEA Carcinoembryonic Antigen
CIN Chromosomal instability

COPEB core promoter element-binding protein

CPBP core promoter binding protein **CPBP** Core Promoter Binding Protein

CPE core promoter element CRC Colorectal cancer

DCBE Double contrast barium enemaDCC Deleted in colorectal cancer gene

ddH₂O Deionized distilled waterDNA Deoxi-ribonucleic acidDRE Digital rectal exam

EDTA Ethylene Diamin tetraacetate

ER Estrogene receptor

FAP familial adenomatous polyps **FKLF** fetal erythroid Kruppel-like factor

FOBT Fecal occult blood test

Ha-MSV Harvey murine sarcoma viruses IBD Inflammatory Bowel Disease IRB institutional review board

Kd Killo Dalton

Ki-MSV Kirsten murine sarcoma viruses

KLF6 Krüppel-like factor 6

KLF-family Krüppel-like transcriptional factors family

Lis-SSCP- low ionic strength- Single-strand conformation

loading buffer polymorphism- loading buffer

LOH Loss of heterozygosityMMR DNA mismatch repairMSI micro satellite instability

OD Optical density

PCR-LIS- polymerase chain reaction-low ionic strength-**SSCP-silver** Single-strand conformation polymorphism- silver

staining staining method

PSA Prostate Specific Antigen

PSG Pregnancy-Specific Glycoprotein genes

PSG pregnancy-specific glycoprotein**SNP** Single nucleotide polymorphism

SSCP Single-strand conformation polymorphism analysis

TAE Tris-Acetate-EDTA buffer
TBE Tris-Borate-EDTA buffer

TE buffer Tris EDTA buffer

TEMED N,N,N',N'-tetramethylene diamine **TGF** β transforming growth factors β

U.C ulcerative colitis

UC-CRC Ulcerative colitis- colorectal cancer pathway

pathway

UKLF ubiquitous Kruppel-like factor

UTR Un-translated regions

uPA urokinase type plasminogen activator10p15 Short arm of chromosome 10 (locus 15)

List of Tables

TABLE NO.	TITLE	PAGE
1-	The clinical data for the patients of adenocarcinoma group (I)	48
2-	The clinical data for the patients of polyps group (II)	49
3-	The clinical data for the patients of IBD group (III)	50
4-	Primer sequences and the size range for klf6 exones used.	57
5-	PCR conditions for KLF6 gene (exons 1-4) amplifications.	58
6-	The primer sequences and the size of the amplified fragments for the KLFM1, KLFM2 and KLFM4 markers	67
7-	PCR conditions for KLF6 gene (LOH markers) amplifications	68
8-	The pattern of mutations, codon no. and amino acid changes in the examined colon cancer cases (GI).	82
9-	The pattern of mutations, codon no. and amino acid changes in the examined colon polyp cases (GII)	85
10-	The pattern of mutations, codon no. and amino acid changes in the examined colon IBD cases (GIII)	88
11-	The clinicopathological data of some cases in GI	104

12-	Statistical relations in GI	104
13-	The clinicopathological data of some cases in GII.	105
14-	The clinicopathological data of some cases in	100
	GIII	107

List of Figures

FIGURE NO.	TITLE	PAGE
1-	Colon anatomy	12
2-	Diagram shows the progress of Colon cancer start from colon polyps	16
3-	Colorectal anatomy diagram show different lesions and cancer anatomy	17
4-	Schematic diagram for different colorectal cancer stages	19
5-	Proposed adenoma to carcinoma sequence in colorectal cancer	29
6-	Schematic representation of the putative steps in colorectal cancer progression	36
7-	KLF6 protein structure	41
8-	Functional domains of KLF6 protein	42
9-	Location of KLF6 gene on chromosome 10.	43
10-	Genomic structure of KLF6 gene	44
11-	A schematic representation of the SSCP technique	56
12- 13-	Genomic DNA isolated from tissue biopsies for cases no. 1-8 of the CRC group	72
1.5-	mutation in the three different studied groups	73

14-	The percentage distribution for mutations in the two age categories in the three examined	74
15-	groups	75
16-	The percentage distribution for mutations of KLF6 gene in different lesion sites in the three examined groups	76
17-	The percentage distribution for mutations of KLF6 gene in different pathological grades of colon cancer cases in cancer group	77
18-	The percentage distribution for mutations of KLF6 gene in the two categories of ulcerative colitis cases	78
19-	The percentage distribution for mutations of KLF6 gene in the two size categories of polyps group.	79
20-A	The percentage distribution for mutations of different exons of KLF6 gene in cancer group (GI).	80
20-В	The percent of mutations for KLF6 gene exons according to sequencing results in cancer group.	81
21-A - B	Detection of KLF6 gene mutations in CRC sample no. 1. (A)- SSCP analysis for exon 2 for CRC samples (T1-T5)	83
	sample (case no. 1) of CRC for both normal and tumor tissues	83

22-A	The percentage distribution for mutations of different exons of KLF6 gene in Polyps group (GII).	84
22-B	The percentage of mutations for KLF6 gene exons according to sequencing results in polyps group.	85
23-	SSCP-silver staining analysis for exon 2 of KLF6 gene for polyps tissues.	86
24-A	The percentage distribution for mutations of different exons of KLF6 gene in IBD group.	87
24-B	The percentage of mutations for KLF6 gene exons according to sequencing results in IBD group.	88
25-	SSCP-silver staining analysis for exon 1 of KLF6 gene for IBD tissues	89
26- (A,B&C)	PCR product for the 3 markers used in the present study (KLFM1, KLFM2 and KLFM4) without using radioactive ³² P in the reaction.	91
27-	Percentage of LOH in cancerous group for the 3 different microsatellite markers used	92
28-	LOH study in cancerous group for KLFM1 marker	92
29-	Individual distribution of LOH analysis in cancer group for the 3 microsatellite markers examined.	93
30-	The percentage distributions of LOH markers with different clinicopathological examined factors.	94

31-	Percentage of LOH in IBD group for the 3 different microsatellite markers used	95
32-	LOH study in IBD group for KLFM4 and KLFM2 markers.	96
33-	Individual distribution of LOH analysis in IBD group for the 3 microsatellite markers examined.	97
34-	The percentage distributions of LOH markers with different clinicopathological examined factors	98
35-	Percentage of LOH in polyps group for the 3 different microsatellite markers used	99
36-	LOH study in polyps group for KLFM4 and KLFM2 markers.	100
37-	Individual distribution of LOH analysis in polyps group for the 3 microsatellite markers examined.	101
38-	The percentage distributions of LOH markers with different clinicopathological examined factors	102
39-	The distribution of KLF6 status results in GI	103
40-	The distribution of KLF6 status results in GII	105
41-	The distribution of KLF6 status results in GIII.	106

<u>Contents</u>

Abstract	i
Introduction	1
Aim of the work	6
Review of Literature	7
I- An overview on cancer	7
Cancer definition	7
Benign and malignant tumors	7
• Causes of Cancer	9
II- COLORECTAL LESSIONS AND CANCER	11
(1) Anatomy of the colon	11
(2) Colorectal lesions	13
(3) Colorectal cancer	17
(a)-Colorectal cancer progress	18
(b)-The symptoms of colorectal cancer	20
(c) -Risk factors of colorectal cancer	20
(d)- Methods of colorectal cancer screening	21
(4) Epidemiology of colorectal lesions and cancer	25
(5) Colorectal carcinoma in Egyptian patients	27
(6)- Molecular pathways of colorectal cancer	28

III- Gene involved in the pathways of colorectal cancer	30
IV- KLF6 tumor suppressor gene	37
(1)- Introduction	37
(2)- KLF6 protein	40
(3)- KLF6 gene nomenclature and identification	43
(4)- KLF6 tumor suppressor gene and Cancer	45
Subjects and Methods	47
Results	72
Discussion	108
Summary	120
References	123
Arabic summary	

INTRODUCTION AND AIM OF THE WORK

Introduction:

Normal development is a balance process, which includes proliferation and cell death. Indeed both proliferation and apoptotic cell death are very complex process that involves the participation of many genes. In both events, the tumor suppressor genes are the most important and studied genes (*Jung & Messingm*, 2000). The carcinogenic procedure is a multistep process involving several genetic alterations that eventually ends in malignant transformation. The study of carcinogenic procedure is very important, because it does not only shed light on some critical steps in the progress of carcinogenesis but may also provide a rational approach for early diagnosis of cancer (*Mendoza-Rodriguez & Cerbon*, 1995).

Although some diagnostic markers are available that are assayable from blood or tissue samples, e. g. Carcinoembryonic Antigen (CEA), Alpha Fetoprotein (AFP) or Prostate Specific Antigen (PSA), the assays using these markers have not, to date, been markedly predictive of the presence of cancer in these individuals, as verified by other clinical diagnoses. The sensitivity and specificity of these assays has been disappointingly low. Time-consuming and labor-intensive clinical assessments (e. g. palpations, x-rays, mammograms, biopsies) have remained the accepted methods for diagnosing cancer. Thus, a need exists for a biomarker that is predictive of the presence of cancer or of an increased risk of developing a cancer in the individual. In particular, a need exists for a marker and an assay to measure the presence and amount of this marker for individuals with an early stage of cancer. If such diagnostic test is available, early treatment with beneficial outcomes would be more likely than at present (Srivastava and Gopal-Srivastava, 2002).

One of the most important discoveries in cancer biology was the cancer arise as a result of cumulative genetic changes in cells. The progression of a tumor from normal cells to pre- cancerous ones, to cancer and then to local invasion and finally metastasis is the result of the clonal expansion of cells that have acquired a selective growth advantage, which allows them to outnumber neighboring cells. This