

# Physicochemical impact of dietary and antinutritive compounds on some pests

#### **A Thesis**

Submitted for the Degree of Ph.D. in

#### **Physical chemistry**

#### BY

Takwa El-sayed Hamed Ellakwa M.sc., chemistry, (2001)

### **Supervised By**

Prof. Dr. Salah A. Abo-El-Enein
Professor of physical chemistry, chemistry
department,
Faculty of science, Ain Shams University,
Cairo

Dr. Tarek Raies Amin
Associate professor of pest physiology
Department of pest physiology
Plant protection Research Institute
Agriculture Research center, Giza

To

**Chemistry Department Faculty of Science** 

**Ain-Shams University** 

2007



# Physico-chemical impact of dietary and antinutritive compounds on some pests

## By

## Takwa El-Sayed Hamed Ellakwa

| Supervised By                                                                                                                                                   | Approved |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Prof. Dr.Salah A. Abo-El-Enein<br>Professor of physical chemistry, chemistry<br>department, Faculty of science, Ain Shams<br>University, Cairo                  |          |
| Dr. Tarek Raies Amin Associate professor of pest physiology Department of pest physiology Plant protection Research Institute Agriculture Research center, Giza |          |

Head of Chemistry department Prof. Dr. El-Said Ahmed Soliman

### **ACKNOWELDGEMENT**

The author wishes to express her sincere thanks and gratitude to **Prof. Dr. Salah Abo-El-Enein**, professor of physical chemistry, faculty of science, Ain Shams University, Cairo for his kind interest in the subject and for his valuable support.

I would to express my deep appreciation and gratitude to *Dr. Tarek Raies Amin* Associate Professor of pest physiology Department of pest physiology, plant protection Research Institute, Agriculture Research center, Giza for his encouragement and preparing this thesis, valuable advice, continuous guidance, constructive criticism and useful discussions.

I'm also gratitude to all staff members and my colleagues at physical chemistry department, Plant protection Research Institute, for their encouragement during the fulfillment of this work.

I would like to express my deep appreciation to my family for their kind help, support and patience.

Finally, thanks are also expressed to the Plant protection Research Institute, for all the facilities provided to the work to be accomplished.

## List of contents

|           | contents                                                                   |       |
|-----------|----------------------------------------------------------------------------|-------|
|           | List of Tables                                                             |       |
|           | List of Figures                                                            |       |
|           | ABSTRACT                                                                   |       |
|           | Introduction                                                               | 1     |
| Chapter 1 | Review of the literature                                                   | 4     |
|           | 1- Phenolic compounds                                                      | 4     |
|           | A- Definition, importance and extraction                                   | 4     |
|           | B- Relation of phenolics to insect control                                 | 7     |
|           | C- Mode of action                                                          | 12    |
|           | D- Their effect on enzyme with special reference to detoxification enzymes | 15    |
|           | 2- Factor influencing midgut alkalinity                                    | 19    |
| Chapter 2 | MATERIALS AND METHODS                                                      | 24    |
|           | 1- Chemicals                                                               | 24    |
|           | 2- Apparatus                                                               | 24    |
|           | 3- Insects                                                                 | 25    |
|           | 4- Host plants                                                             | 25    |
|           | 5- Extraction procedures                                                   | 26    |
|           | 6- Quantification of total phenolics                                       | 27    |
|           | 7-Benzoic acid derivatives                                                 | 28    |
|           | A- Incorporation of phenolics into artificial diet                         | 28    |
|           | B- <i>In vitro</i> inhibition by phenolics                                 | 28    |
|           | 8-Diets of varible pH and buffer capacity                                  | 29    |
|           | A- Buffer preparation                                                      | 30 30 |
|           | B- Titration                                                               | 31    |
|           | C- Nutritional indices                                                     |       |
|           | 9-Preparation of larvae for analysis                                       | 33    |

|           | Contents                                              |    |
|-----------|-------------------------------------------------------|----|
|           | 10- Analytical procedures                             | 33 |
|           | A- Determination of total carbohydrates               | 33 |
|           | B- Determination of total proteins                    | 36 |
|           | C- Determination of alkaline phosphatase              | 38 |
|           | D- Determination of non-specific esterases            | 38 |
|           | E- Determination of Digestive enzymes                 | 39 |
|           | i-Protease assay                                      | 41 |
|           | ii-Invertase assay                                    | 41 |
|           | F- Determination of Glutathion S-tranferase           | 43 |
| Chapter 3 | 11- Statistics                                        | 44 |
| _         | RESULTS AND DISSCUTION                                | 45 |
|           | 1- Amount of phenolics in plant leaves                | 45 |
|           | A- Homogenizing extraction using aqueous              | 45 |
|           | solvents                                              |    |
|           | B- Crude extract                                      | 48 |
|           | 2-Effect of phenolic on detoxification enzymes        | 51 |
|           | 3 - Effect of changes in food composition             | 55 |
|           | A- Chemical changes                                   | 55 |
|           | i- Effect of incorporation of phenolics into          | 55 |
|           | artifical diet on                                     |    |
|           | 1-Larval survival and growth                          | 55 |
|           | 2- In vivo main metabolites                           | 59 |
|           | 3- <i>In vivo</i> protease and invertase              | 59 |
|           | ii- <i>In vitro</i> interaction of phenolics with the |    |
|           | substrates and their enzymes                          |    |
|           | B-Physicochemical changes                             | 69 |
|           | i-Physicochemical characters of the artificial        |    |
|           | diet                                                  |    |
|           | ii-Effect of the artificial diet on larval            | 71 |
|           | performance                                           |    |
|           | iii-Effect of the artificial diet on larvae           | 71 |
|           | nutritional indices                                   |    |
|           | iv-Carbohydrates as an indicator for energy           | 75 |
|           | demands                                               |    |

| v-Statistical significance of pH and molarity on some parameters of <i>Spodoptera littoralis</i> larvae | 75 |
|---------------------------------------------------------------------------------------------------------|----|
| SUMMARY                                                                                                 | 79 |
| CONCLUSION AND RECOMMENDATION                                                                           | 85 |
| REFERENCES                                                                                              | 87 |
| ARABIC SUMMARY                                                                                          |    |

# **List of tables**

| Table   | Title                                                                                                                                | Page No |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 1 | Plant species used in rearing<br>Spodoptera Littoralis larvae                                                                        | 26      |
| Table 2 | Total phenols extracted by homogenizing method from different plant leaves                                                           | 46      |
| Table 3 | Crude extract of different plant leaves, extracted using two aqueous solvents                                                        | 50      |
| Table 4 | Host plant effect on detoxication enzyme activities of fifth-instar of Spodoptera littoralis                                         | 52      |
| Table 5 | Total protein and carbohydrates for <i>Spodoptera littoralis</i> larvae exposed (5 days) to 80X10 <sup>-3</sup> M dietary phenolics. | 60      |
| Table 6 | Digestive enzymes for <i>Spodoptera littoralis</i> larvae exposed (5 days) to $80X10^{-3}M$ dietary phenolics.                       | 61      |
| Table 7 | Effect of <i>in vitro</i> pre-incubation of phenolic acids with the enzyme protein or the substrate casein on the protease activity. | 63      |
| Table 8 | Effect of <i>in vitro</i> pre-incubation of phenolic acids with the enzyme protein or the substrate sucrose on the                   | 65      |

|          | invertase activity.                                                                                                                                |    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 9  | pH and molarity of buffer solutions and the corresponding pH values of artificial diets consumed by Spodoptera littoralls larvae                   |    |
| Table 10 | Percent survival, weight gain and relative growth rate of <i>Spodoptera littoralis</i> larvae fed for 4 days on different artificial diets.        | 72 |
| Table 11 | Dietary effects on nutritional indices of<br>Spodoptera littoralis larvae after<br>feeding for 4 successive days on<br>different artificial diets. | 74 |
| Table 12 | Total carbohydrates of <i>S. littoralis</i> larvae fed for four days on nine different artificial dies .                                           | 76 |

| Table 13 | Two way ANOVA completely 77              |
|----------|------------------------------------------|
|          | randomized indicating F ratio and P      |
|          | values, and interaction of the effect of |
|          | diets prepared by buffer solutions       |
|          | differing in their pH and buffer         |
|          | concentration (conc.) on some            |
|          | parameters of Spodoptera littoralis      |
|          | larvae.                                  |
|          |                                          |

..

## LIST OF FIGURES

| Fig.(1): The standard curve for total carbohydrates                                                       | 35 |
|-----------------------------------------------------------------------------------------------------------|----|
| Fig.(2): The standard curve for total protein                                                             | 37 |
| <b>Fig.(3)</b> : The standard curve for $\alpha$ -naphthol                                                | 40 |
| <b>Fig.(4)</b> : The standard curve for $\beta$ -naphthol                                                 | 41 |
| <b>Fig.(5)</b> : Effect of phenolic acids on weight gain at 5 days of <i>Spodoptera littoralis</i> larvae | 56 |
| <b>Fig. (6)</b> : Effect of phenolic acids on survival at 5 days of <i>Spodoptera littoralis</i> Larvae.  | 58 |

#### **Abstract**

The pressent study was performed to demonstrate the phytochemical effects on the cotton leafworm, Spodptera littoralis (Boisd.) larvae .Total phenols of some cotton leafworm host plants leaves i.e castor bean, cabbage, grapevine and garden rocket, were extracted by using homogenizing method and aqueous (80%) methanol and acetone. Quantification of phenolics was carried out by Folin-Ciocalteu method . The results revealed that the amount of phenols significantly, differed among the tested host plants in the following order: castor bean < garden rocket < cabbage < grapevine . Although acetone was of a good extraction efficiency, methanol was more efficient in some cases. The yield of total phenols using this method of extraction was satisfactory and total analysis has been achieved, the situation which fullfil the progressing interest to screen these important compounds. When the larvae fed on those host plants from egg hatching to fifth larval instar (10 days), host plants significantly modify the titre of detoxification enzymes ;alkaline phosphatase, non-specific esterases and glutathione-S-transferase. This suggests that phenolic compounds could be implicated in the change of S. littoralis susceptibility to insecticides. When tannic and salicylic acids were incorporated into artificial diet at concentrations of 20 X 10<sup>-3</sup> M through 160 X 10<sup>-3</sup> M, and introduced to the 4 th larval instar for 5 days to demonstrate some aspects of their mode of action, they could, significantly, reduce growth, main metabolites and digestive enzymes of the larvae. In vitro experiments indicated that incubation of phenolic acids not only had the ability to affect protein (casein), but also affected carbohydrates (sucrose) and their specific enzymes; protease and invertase, respectively, suggesting their ability to get food less digestible. The inhibitory effect that obtained after 10 min incubation was not significantly differed from that obtained after 20 min, indicating that the interaction of the enzymes or their substrates with phenolics was rapid. The results revealed that the phytochemical effects was not limited to the chemical composition of the food, but also to its physicochemical characters. The 4 th larval instar fed on artificial diets (for 4 days) differing their pH and buffering capacity. These diets caused significant changes in growth, nutritional indices and total carbohydrates of the larvae. The larvae probably to overcome unsuitable physicochemical conditions of the introduced diets, increased their demand on energy through consuming digested or assimilated food like carbohydrates, which finally influencing larval performance parameters. In general, the study emphasizes the importance of nutritional ecology in the field of insect control.

#### INTRODUCTION

The extensive use of chemical insecticides has caused a number of ecological, economical and social problems to various ecological niches around the world including Egypt, in addition to resistance of several classes of insects to pesticides. Hence there is a growing necessity and interest in the search of new approaches in insect control

Phytophagous insects like the cotton leafworm, *Spodoptera littoralis*, (O:Lepidoptera) depend on plants as food which must fulfill their nutritional requirements for normal growth and development to occur. Alleochemicals, water and nitrogen content, and physical attributes of foliage are considered to be determinant factors greatly affecting the quality of plant as diet, which in turn suppress insect growth and survival (**Felton et al 1992; Appel, 1994**).

Allelochemicals or allelochemics are non-nutrient compounds produced by one organism and affect another species (Whittaker, 1970). They occur in plant tissues as phenolic acids, polyphenols, flavonoids and tannins and appear to be involved in insect resistance of crop plants (Todd et al, 1971). Phenolics are considered as important components of both constitutive and induced defense against herbivores and pathogens, by acting as antinutritive compounds affecting the growth and development of a variety of insects (Reese and Beck, 1976; Bernays, 1981; Reese et al; 1982; Duffy, 1986; Appel, 1993; Abdel-Baky et al; 2005).

Phenolic compounds have been quantified in several plant species (e.g. Käkönen et al; 1999) and identified (e.g. Nakatani,

1997; Abd El-Ghany, 2006). In attempts to control insects using natural compounds, Effects of crude plant extracts contained phenolic compounds have been examined (e.g. Hegazy et al; 1992; Salem et al; 1994; Heil et al; 2002; Abdel-Baky et al; 2005) In spite of, cotton leafworm is a polyphagous pest and exposed to many allelochemicals, phenolic content of its most host plants is not known. Antonious et al. (1999) measured total phenols of different commercial tomato leaflets cultivars in relation to mortality and feeding of fourth-instar larvae of *S.littoralis*. Also, the mode of action of phenolics on this pest is not well studied.

Since midgut pH has long been recognized as an important factor for the optimal activity of digestive enzymes, physicochemical characters of diet or plant such as pH, redox potential and buffering capacity and their affect on insect gut conditions have been reported (Schultz and lechowiz, 1986; Appel and Maines, 1995; Johnson and Felton, 1996). But reports deal with effect of such characters on performance and fitness on phytophagous insects are few. Karowe and Martin (1993) found that the growth of fourth instar, *Manduca sexta* larvae on nutrient-rich artificial diets was significantly affected by the characteristics of the buffer system present in the diet. However, gut physico-chemistry which may strongly impact digestion and nutrient assimilation in herbivorous insects varies among lepidopteran larvae (Johonson and Felton, 1996).

The aim of the present work was to demonstrate the effects of plant chemistry on the cotton leafworm, *S. littoralis* larvae and studies were carried out to:-

- 1- Extract and quantify total phenolic content of some cotton leafworm host plants i.e. grapevine, cabbage, castor bean leaves and garden rocket.
- 2- Find any correlation between phenolic content of those host plants and some detoxification enzymes such as glutathione S-transferase (GST), general esterases and alkaline phosphatase (alkpase).
- 3- Evaluate the ability of some phenolic compounds which are known to occur in plant tissues, to inhibit dietary compounds and digestive enzymes of the larvae. Two benzoic acid derivatives were used; tannic acid and salicylic acid, and the inhibitory effect was estimated either *in vivo* or *in vitro*.
- 4- Examine the ability of change in some physicochemical conditions of the diet to affect the larvae. Hydrogen ion concentration (pH) and molarity (M) of an artificial diet were used to test their effect on nutritional indices and growth.