# Arterial Blood Supply of the Nose and the Pharynx: An Angiographic Study

#### **Thesis**

Submitted for Partial Fulfillment of MD Degree in Otorhinolaryngology

#### By

#### **Ahmed Abdelmoneim Anwar Teaima**

MSc of Otorhinolaryngology Faculty of Medicine, Ain Shams University

# Under Supervision of **Prof. Dr. Badr Eldin Mostafa**

Professor of Otorhinolaryngology Faculty of Medicine, Ain Shams University

### Prof. Dr. Talaat Ali Elsamny

Professor of Otorhinolaryngology Faculty of Medicine, Ain Shams University

### Prof. Dr. Tamer Ali Youssef

Professor of Otorhinolaryngology Faculty of Medicine, Ain Shams University

### Dr. Ahmed Bahaa Elden Elserwi

Fellow of Diagnostic & Interventional Radiology Ain Shams University Specialized Hospital, Ain Shams University

> Faculty of Medicine Ain Shams University 2017



I am thankful to **ALLAH** for granting me the will and power to finish this work

I would like to express my deepest gratitude and cardinal appreciation to **Prof. Dr. Badr Eldin Mostafa,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain shams University, for his great encouragement, sharing of his thoughts, experience, sound advice and precious guidance in the production of this work. Working under his supervision was indeed a great honour.

Also I wish to express my deep thanks to **Prof. Dr. Talaat Ali Elsamny,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his continuous support, kind cooperation and valuable advice, which have been of great help in the final outcome of this work.

My sincere gratitude to **Prof. Dr. Tamer Ali Youssef,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his generous assistance, great help, valuable advice, and sacrifice of much of his precious time to make this work possible.

I wish also to express my deep appreciation to **Dr. Ahmed Bahaa Elden Elserwi,** Consultant of Diagnostic & Interventional Radiology Ain Shams University Specialized Hospital, for his close supervision and honest assistance.

Finally, I would like to express my deepest thankfulness to my parents and my wife for their great help and support throughout my medical career.

**Ahmed Teaima** 



# List of Contents

| Subject                          | Page No. |
|----------------------------------|----------|
| List of Figures                  |          |
| List of Tables                   | V        |
| List of Abbreviations            | VI       |
| Introduction                     | 1        |
| Aim of the study                 | 4        |
| Review of Literature             |          |
| Anatomy and Radiological Anatomy | 5        |
| Patients and Methods             | 35       |
| Results                          | 37       |
| Discussion                       | 59       |
| Conclusion                       | 76       |
| Recommendations                  | 77       |
| Summary                          | 79       |
| References                       | 81       |
| Arabic Summary                   | ·····    |

# **List of Figures**

| Figure | Title                                          |    |
|--------|------------------------------------------------|----|
| 1      | Schematic arterial supply of the sinonasal     | 7  |
|        | cavity                                         | /  |
| 2      | vascular anatomy of the nasal septum           | 8  |
| 3      | Blood supply to the lateral wall of the nose   | 9  |
| 4      | Anatomical drawing depicting the course of     | 10 |
|        | the AEA                                        | 10 |
| 5      | The anterior ethmoidal artery course           | 11 |
| 6,7    | CT scan shows AEA course                       | 13 |
| 8      | CT scan shows PEA course                       | 14 |
| 9      | ICA angiogram in a patient with recurrent      | 15 |
|        | epistaxis                                      | 13 |
| 10     | ECA angiogram, lateral view                    | 19 |
| 11     | Distribution of sphenopalatine artery in 21    |    |
|        | posterior nasal cavity                         | 21 |
| 12     | The posterior lateral nasal artery patterns    | 22 |
| 13     | Patterns of inferior turbinate artery division | 23 |
| 14     | Branching patterns of the ascending            | 28 |
|        | pharyngeal artery                              | 20 |
| 15     | Selective angiographic study, lateral view of  |    |
|        | the common trunk of the ascending              | 28 |
|        | pharyngeal and occipital arteries              |    |
| 16     | Ascending pharyngeal artery arising from       | 29 |
|        | ICA                                            | 2) |
| 17     | Selective angiographic study of the lingual    | 30 |
|        | artery                                         | 50 |
| 18     | ECA angiogram marking the linguofacial         | 32 |
|        | trunk                                          | 34 |

| Figure | Title                                                                             | Page |
|--------|-----------------------------------------------------------------------------------|------|
| 19     | Location of the facial artery in relation to the nasolabial fold                  | 32   |
| 20     | Selective angiographic study of the facial artery                                 | 33   |
| 21     | Curved course of ICA                                                              | 38   |
| 22     | Level of curving of ICA at the second cervical vertebra                           | 38   |
| 23     | Straight ICA                                                                      | 39   |
| 24     | Ophthalmic origin from the supraclinoid part of ICA                               | 39   |
| 25     | Origin of Ophthalmic artery from the cavernous part of ICA                        | 40   |
| 26     | a. Absent of Ophthalmic artery from ICA b,c. Origin of ophthalmic artery from MMA | 40   |
| 27     | Absent ethmoibal arteries                                                         | 41   |
| 28     | Ethmoidal arteries arise from ophthalmic artery                                   | 42   |
| 29     | Common Linguofacial trunk from ECA                                                | 43   |
| 30     | Lingual artery origin as a separate branch from ECA                               | 43   |
| 31     | Tortuous course of the lingual artery                                             | 44   |
| 32     | Straight course of the lingual artery                                             | 44   |
| 33     | Origin of the lingual artery above the level of the greater horn of hyoid bone    | 45   |
| 34     | Origin of the lingual artery below the level of the greater horn of hyoid bone    | 45   |
| 35     | Origin of the lingual artery at the level of the greater horn of hyoid bone       | 46   |
| 36     | Hypoplastic facial artery, replaced by transverse facial artery                   | 47   |

| Figure | Title                                                                                              | Page |
|--------|----------------------------------------------------------------------------------------------------|------|
| 37     | Origin of the facial artery at the same level of occipital artery origin                           | 48   |
| 38     | Origin of the facial artery below the occipital artery origin                                      | 48   |
| 39     | Origin of the facial artery above the occipital artery origin                                      | 49   |
| 40     | Ascending palatine artery origin from ECA                                                          | 49   |
| 41     | Ascending palatine artery origin from the facial artery                                            | 50   |
| 42     | Origin of the ascending pharyngeal artery from the occipital artery                                | 50   |
| 43     | Origin of the ascending pharyngeal artery from the ECA                                             | 51   |
| 44     | Origin of the ascending pharyngeal artery from the Carotid bifurcation                             | 51   |
| 45     | level of maxillary artery behind the neck of<br>the mandible and at the first cervical<br>vertebra | 52   |
| 46     | Internal maxillary artery has two loops in the PPF                                                 | 52   |
| 47     | Internal maxillary artery has one loop in PPF                                                      | 53   |
| 48     | Internal maxillary artery has straight course in pterygopalatine fossa                             | 53   |
| 49     | Descending palatine artery origin from the internal maxillary artery                               | 54   |
| 50     | Sphenopalatine artery divides into four branches                                                   | 55   |
| 51     | Sphenopalatine artery divides into three branches                                                  | 55   |

| Figure | Title                                           | Page   |  |
|--------|-------------------------------------------------|--------|--|
| 52     | Sphenopalatine artery divides into two          | 56     |  |
|        | branches                                        | 30     |  |
| 53     | Sphenopalatine artery branching directly        | 56     |  |
|        | after its origin from internal maxillary artery | y   56 |  |
| 54     | Sphenopalatine artery branches after            | 56     |  |
|        | distance from its origin                        | 30     |  |
| 55     | Cross circulation in the nose                   | 57     |  |
| 56     | CT angiography on the nose & paranasal          |        |  |
|        | sinuses coronal cut showing the distance        | 58     |  |
|        | between the angular artery and the anterior 58  |        |  |
|        | nasal spine                                     |        |  |
| 57     | CT angiography on the nose & paranasal          |        |  |
|        | sinuses axial cut showing the distance          | 58     |  |
|        | between the angular artery and alar base        |        |  |
|        | and anterior nasal spine                        |        |  |

## **List of Tables**

| Table | Title                                                          | Page |
|-------|----------------------------------------------------------------|------|
| 1     | Distribution of the third portion of the IMA                   | 19   |
| 2     | Anastomosis between the external and internal carotid arteries | 34   |

### **List of Abbreviations**

| Abb. | Full term                   |
|------|-----------------------------|
| AEA  | Anterior ethmoidal aretery  |
| AphA | Ascending pharyngeal artery |
| CCA  | Common Carotid artery       |
| СТ   | Computed tomography         |
| DPA  | Descending palatine artery  |
| ECA  | External carotid artery     |
| ICA  | Internal Carotid Artery     |
| ILT  | Inferior lateral trunk      |
| IMA  | Internal maxillary artery   |
| МНТ  | Meningeal hypophyseal trunk |
| MMA  | Middle meningeal artery     |
| PEA  | Posterior ethmoidal artery  |
| PPF  | Pterygopalatine fossa       |
| SPA  | Sphenopalatine artery       |
| SPF  | Sphenopalatine foramen      |

### Introduction

Major nasal blood flow is provided simultaneously by the external and internal carotid arteries. Variability exists in patient anatomy (with some vessels absent), as well as in physical features (with higher blood pressure in the external vs internal carotid artery (Saban et al., 2012).

The external carotid artery (ECA) provides arterial flow to the nose via the facial and internal maxillary artery. The internal carotid artery (ICA) supplies the nose via the terminal branches of the ophthalmic artery and the anterior and posterior ethmoid arteries. Detailed knowledge of the arterial anatomy of this region is important for safe and successful treatment (**Fatakia et al., 2010**).

Arterial blood supply of the pharynx is derived primarily from the ECA and its main branches including the ascending pharyngeal artery. The tonsillar artery branch of the facial artery, the greater palatine and pterygoid branches of the maxillary artery and the dorsal lingual branches of the lingual artery provide an additional blood supply to the pharynx. The ascending pharyngeal artery, although small, is an important vessel with a territory that includes several deep extra- and intracranial structures

involved in a variety of disease processes (Hacein-Bey et al., 2002).

Even in the absence of vascular anomalies or clearly visible anastomoses, a number of small vessels still serve as potential connections between the ECA and ICA. These include the artery of the foramen rotundum, the vidian artery, the middle meningeal artery, the accessory meningeal artery, the ascending pharyngeal artery, the inferolateral trunk, the meningohypophysial trunk, and communications between the facial artery, sphenopalatine artery and ophthalmic artery (Willemsa et al., 2009).

Following sphenopalatine artery occlusion, ischaemic necrosis is a potential risk in anatomical areas that receive their only arterial supply from this artery. The staging of bilateral sphenopalatine artery occlusion needs to be studied (Elsheikh and Elanwar, 2013).

Embolization procedures for extracranial disease in the head and neck region are mostly performed for intractable epistaxis or in the presence of a hypervascular tumor either prior to surgical removal or as a palliative treatment (**Bilbao et al., 2006**).

Complete selective external and internal carotid angiograms are essential to evaluation of arterial blood

supply (Krajina & Chrobok, 2014). Lasjaunias stressed their importance as in some cases, they may reveal specific abnormalities indicating the cause and location of the hemorrhage. These include contrast extravasation, a tumor vascular malformation, blush, traumatic pseudoaneurysm, or another unusual ICA source of epistaxis. Furthermore, angiography enables identification of vascular anomalies, variants, or anastomoses between the ECA and ICA or ophthalmic artery that could increase the risk of complications, such as stroke or blindness during embolization. These findings may influence the embolization protocol or even lead to aborting the procedure and referral to surgery (Lasjaunias et al., 1979), (Willemsa et al., 2009).

### **Aim of the Study**

Our aim is to define origin, number, target and branches of the arteries supplying the nose and the pharynx and know related different anatomical variations and their percentage.

### **Review of Literature**

### (Anatomy and Radiological Anatomy)

The internal and external carotid arteries are the main arterial supply to the head and neck. The internal carotid artery arises at the bifurcation of the common carotid artery and continues upwards in the neck. The internal carotid artery is deep to the sternomastoid muscle, hypoglossal nerve, the lingual and facial veins. It is separated from the external carotid artery by the styloid process, styloglossus, stylopharyngeus muscle. glossopharyngeal nerve. pharyngeal branch of vagus nerve and the deep part of the parotid gland. At the base of the skull the last four cranial nerves lie between the internal carotid artery and the internal jugular vein. The pharyngeal wall lies medial to the artery separated from it by the ascending pharyngeal artery and the superior laryngeal nerve (Standring, 2005), (Ozgur et al., 2007).

The external carotid artery usually begins at the upper border of thyroid cartilage. At first, it ascends slightly forwards then inclines backwards and a little laterally to enter into the substance of the parotid gland. As it ascends, it gives off several large branches and

diminishes rapidly in caliber. In children, the external carotid artery is smaller than the internal carotid artery, but in adults the two are almost of equal size. At its origin, it is present in the carotid triangle and lies anteromedial to the internal carotid artery. Later it becomes anterior then lateral to it and ends by dividing into superficial temporal and maxillary arteries opposite the neck of the mandible (Sinnatamby, 2005). In this review, we are reviewing the literature about the branches of the internal and external carotid arteries supplying the nose and the pharynx.

### Arterial blood supply of the nose

Major nasal blood flow is by the external and internal carotid arteries. Anatomy is variable between persons (with some vessels absent). Also physical features are different with higher blood pressure in the external vs internal carotid artery (Fig. 1) (Saban et al., 2012).