Role of MDCT in Prediction of Response to Transcatheter Arterial Chemoembolization in Unresectable Hepatocellular Carcinoma Patients

Essay
Submitted for Partial Fulfillment of Master Degree
In Radiodiagnosis

By

Ahmed Ibrahim Ibrahim Nassar

(M.B.B.CH., Ain Shams University)

Supervisors

Ass. Prof. Hossam Moussa Sakr

Assistant Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Ass. Prof. Yasser Ibrahim Abdelkhalek

Assistant Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2017

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Ass. Prof. Dr. Hossam Moussa Sakr**, Assistant Professor of Radiodiagnosis, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Ass. Prof. Yasser Ibrahim Abdelkhalek, Assistant Professor of Radiodiagnosis, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

	Page
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Abstract	viii
Introduction & Aim of Work	1
Review of Literature	4
Chapter (1):	4
Anatomy of the Liver	
Chapter (2):	23
Pathology of Hepatocellular Carcinoma	
Chapter (3):	44
Triphasic CT	
Chapter (4):	57
TACE	
Discussion	88
Summary	101
Conclusion	103
Recommendations	104
References	105
Arabic Summary	

List of Abbreviations

AASLD	American Association for the Study of
	Liver Diseases
Acc	Accessory
AFP	Alpha feto protein
AJCC	American Joint Commission for Cancers
Alb	Albumin
ALT	Alanine transferase enzyme.
AO	Aorta
AST	Aspartate transferase enzyme
BCLC	Barcelona Clinic of Liver Cancer
CA	Celiac artery
CBD	Common bile duct
CHA	Common hepatic artery
CHD	Common hepatic duct
CLIP	Cancer of the Liver Italian Program
Cm	Centimeter
CR	Complete response
CT	Computaed tomo graphy
DSA	Digital subtraction angiography
EASL	Europian association for the study of the
	liver
ECOG	Eastern Cooperative Oncology Group
EORTC	Europian organization for research and
	treatment of cancer
ESLC	Egyptian society of liver cancer
FCAT	Federative Committee on Anatomical
	Terminology
Fig	Figure
FU	Flurouracil
GDA	Gastroduodenal artery
GI	Gastro intestinal

List of Abbreviations (Cont.)

HA	Hepatic artery.
Hb	Hemoglobin.
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HFL	Hepaticc focal lesion
HU	Hounsfield unit
HVs	Hepatic veins.
HVWP	Hepatic Venous Wedge Pressure
ISRN	International Scholarly Research
	network
IV	Intravenous
IVC	Inferior vena cava
JNCI	Ournal of the National Cancer Institute
Kg	Killogram
L	Lumbar
LGA	left gastric artery
LGA	Left gastric artery
LHA	Left hepatic artery
LHV	Left hepatic vein
LNs	Lymph nodes.
MDCT	Multi detector CT
MHV	Middle hepatic vein
MIP	Maximum intensity projection
mRECIST	Modified response evaluation criteria in
	solid tumors
MRI	Magnetic resonance imaging
MSCT	Multi slice computed tomography
NASH	Nonalcoholic steatohepatitis
NHTMRI	National Hepatology and Tropical
	Medicine Research Institute

List of Abbreviations (Cont.)

PC	Prothrombin concentration
PD	Progressive disease
PHA	Proper hepatic artery
PR	Partial response
PT	Prothrombin time
PV	Portal vein.
RAPV	The right anterior portal vein
RECIST	Response evaluation criteria in solid
	tumors
RHA	Right hepatic artery
RHV	Right hepatic vein
RPPV	Right posterior portal vein
RRA	Right renal artery
SA	Splenic artery
SMA	Superior mesenteric artery
SMV	Superior mesenteric vein
ST	Stable disease
SV	Splenic vein
T.Bil	Total bilirubin
TACE	Trans arterial chemo embolization
TNM	Tumor, nodes, metastases staging
US	Ultrasound
WHO	World Health Organization

List of Tables

Tables	Title	Page
1	Hepatic Arterial Variants according to	15
	the Michel Classification	
2	TNM staging of liver tumors	39
3	ECOG Performance Status	40
4	CLIP Classifications	40
5a, 5b	Child-Turcotee-Pugh classification	41
6	Okuda staging	42
7	The Barcelona Clinic of Liver Cancer	42
	(BCLC) Staging System	

List of Figures

Figures	Title	Page
1	Superior aspect of the liver of the liver	5
2	The inferior surface of the liver	6
3	The Visceral and Posterior surface of the	8
	liver	
4	Segmental anatomy of the liver	9
5	Transverse image through the superior liver	10
	segments	
6	Transverse image through the inferior liver	12
	segments	
7	Blood supply of liver	13
8	The Normal portal vein anatomy	17
9	Biliary drainage of the liver	19
10	Sequential CT scan through the liver	20
11	Normal hepatic arterial anatomy in the CTA	20
12	Normal Hepatic venous confluence	21
13	Normal portal venous anatomy. Image from	21
	3D CT portography	
14	Variant hepatic arterial anatomy system	22
15	Replaced left hepatic artery	22
16	Replaced right and left hepatic arteries	29
17	Large HCC with mosaic pattern	30
18	Macroscopic view showing a homogeneous	30
	encapsulated HCC	
19	Macro infiltrative form of HCC	31
20	HCC with portal invasion	34
21	Fibrolamellar hepatocellular carcinoma	36
22	Hepatocholangiocarcinoma	51
23	MDCT scans show the typical enhancement	52
	pattern of HCC	

List of Figures (Cont.)

Figures Title Page		
24	Fibrolamellar HCC in a contrast-	53
<i>∠</i> 4	enhanced CT scan	33
25		<i>5 1</i>
25	MDCT with volume rendering images	54
2.1	showing HCC	
26	Multifocal hepatocellular carcinoma in	55
	MIP images	
27	Type 1 blood flow in hepatocellular	56
	carcinoma	
28	Type 2 blood flow in hepatocellular	56
	carcinoma	
29	Type 3 blood flow in hepatocellular	58
	carcinoma	
30	Updated BCLC staging system and	60
	treatment strategy in 2012	
31	CT shows residual Ethiodol retained in a	66
	multifocal hepatocellular carcinoma	
32	DSA of the celiac axis	70
33	Angiography and MSCT for a patient	71
	who had TACE session	-
34	Hepatic angiograms showing tumor	72
	vascularity associated with an HCC	
35	Gastric uptake: nonenhanced CT scan	73
	obtained after chemoembolization	, 5
36	Radiographic response criteria used to	75
30	assess the clinical effects of HCC	13
	treatment.	
37	A Pre-TACE contrast-enhanced CT.	81
38	A Contrast-enhanced CT shows a 3.8-cm	82
	arterial enhancing HCC.	

List of Figures (Cont.)

Figures	Title	Page
39	Radiographic response criteria used to assess the clinical effects of HCC treatment.	84

Abstract

This study is to evaluate the role of triphasic CT in prediction of the prognosis of the irresectable HCC patients who had locally treated with transcatheter arterial chemo embolization by studying the enhancement (vascularity) pattern & the volume changes of the HCC after TACE. Our study included triphasic CT study & serum AFP level for assessment of the target lesion after doing TACE as a loco regional therapy for HCC. In our study, there is a highly significant relationship between the maximum initial diameter of the target lesion before TACE & the maximum diameter of the lesion after TACE as the initial maximum diameter of the target lesion is increased the maximum diameter of the lesion after TACE is also increased.

Keyword: AFP,TCC,TACE, Hepatocellular, Chemoembolization

Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, the fifth most common cancer and the third most common global cause of cancer-related deaths. In 2000, there were 564,000 new cases and 549,000 deaths from HCC worldwide, indicating the devastating prognosis of this tumor (*Shariff et al.*, 2015).

The major risk factors for HCC are the presence of cirrhosis, and HBV/HCV coinfection. Other factors, such as aflatoxin and nonalcoholic steatohepatitis (NASH), are important and prevalent in certain areas of the world (*Shariff et al.*, 2015).

Unlike other forms of cancer, the diagnosis of HCC does not always require histological confirmation and HCC is usually diagnosed by tumor marker and radiology such as ultrasonography, C.T and MRI (*Bolondi et al.*, 2014).

Current effective treatments for HCC include liver resection, transplantation, various local ablative and transarterial therapies. Surgical resection and liver transplantation are the main curative treatments. Unfortunately, only around 20 % patients, mostly diagnosed by regular screening, may benefit from these surgical therapies (*Yau et al.*, 2012).

Chemoembolization is the most commonly used treatment for HCC that cannot be submitted to surgery. It is based on the objective of tumor devascularization, in which the oxygen and nutrient supply to the tumor is blocked, resulting in tumor necrosis (*Geschwind et al.*, 2012).

Evaluation of the therapeutic effect of HCC after TACE is primarily based on the findings of imaging studies. MDCT is the standard imaging technique for monitoring the

effectiveness of TACE by studying the enhancement (vascularity) pattern & the volume changes of the HCC after TACE and for evaluation of the presence of viable tumor in HCC treated with TACE to determine the subsequent treatment or to avoid unnecessary treatment. (William et al., 2015)

The aim of this study:

Is to evaluate the role of MDCT in prediction of the response of the irresectable HCC patients who had locally treated with transcatheter arterial chemo embolization by studying the enhancement (vascularity) pattern and the volume changes of the HCC after TACE.