Impact of Normalization of Uric Acid Level on the Clinical Outcome of Non-Alcoholic Fatty Liver Patients: A Pilot Study

Thesis

Submitted for fulfillment of Master's degree in Pharmaceutical Sciences (Clinical Pharmacy)

By

Sylvia Samir Fouad
B. Pharm. Sci.
Assistant Researcher at Pharmacology Department
National Research Centre, Cairo, Egypt

Under Supervision of:

Dr. Osama Ahmed Badary

Professor of Clinical Pharmacy Faculty of Pharmacy Ain Shams University

Dr. Salwa Henry Salama

Professor of Pharmacology National Research Centre

Dr. Mohamad Ali Mokhles

Professor of Hepatology & Gastroenterology National Research Centre

> Faculty of Pharmacy Ain Shams University 2016

Acknowledgment

First and foremost, praise is to GOd, by whose abundant grace, this work has come to completion.

I owe my deepest gratitude and appreciation to **Dr. Osama Badary**, Professor of Clinical Pharmacy – Faculty of Pharmacy - Ain Shams University, for sacrificing his precious time, sincere help, valuable guidance, and continuous support in completing this work.

I am very grateful to **Dr. Salwa Salama**, Professor of Pharmacology - National Research Centre, for her great assistance, precious advice, continuous encouragement and support throughout all stages of this work.

I am deeply thankful to **Dr. Mohamed Mokhles**, Professor of Hepatology and Gastroenterology - National Research Centre, for his close supervision and precious effort. If it wasn't for his patience, help, continuous encouragement and support, this work would have never been as it is.

I would like to thank all members of the Pharmacology Department, National Research Centre, for their consideration, help and support, also thanks is extended to all the members of Clinical Pharmacy Department, Faculty of Pharmacy-Ain Shams University, for their support, patience and continuous help.

Last but not the least, I woklould like to dedicate this work and express my deep appreciation to my parents, family and friends, to whom I am greatly indebted for their love and spiritual support throughout my life. Saving my deepest gratitude for my very supportive husband, for it is only with his help and tremendous effort through every step that this work is finally done.

Abstract

Abstract

Background: Non Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver injury. Elevated Uric acid (UA) is an important factor in the development of NAFLD.

Objective: Evaluating the effect of treating hyperuricemia by allopurinol on NAFLD patients by blood markers as CK 18, adiponectin, liver enzymes (GOT, GPT), Cholesterol (Chol) and Triglycerides (TGs) and measuring fatty liver (FL) by ultrasound (US).

Methods: Thirty-one hyperuricemic patients with NAFLD diagnosed by US were enrolled in the study and divided into two groups; Group A (14 patients): Placebo group who received starch based tablets for 3 months and Group B (17 patients): Treatment group who received allopurinol (100-300 mg) for 3 months. UA, CK 18, adiponectin, GPT, GOT, Chol, TGs and FL size and grade by US were measured before and after treatment.

Results: The study showed a significant decline in CK18 levels after treatment with allopurinol (P=0.006), improvement in GPT and GOT levels after treatment (P<0.001 and P=0.013, respectively). Also there was an improvement in Chol and TGs levels after treatment (P=0.01 and 0.038, respectively). US parameters showed no significant difference in the FL size and grade before and after treatment (P=0.208 and 0.325, respectively) and also no significant improvement in adiponectin level is observed (P=0.058)

Conclusion: Allopurinol succeeded in decreasing Chol, TGs and liver transaminases levels in the treatment group more than that of the placebo group and CK18 may be used as a good marker in assessing the improvement in patients with NAFLD associated with hyperuricemia.

Keywords: UA, NAFLD, allopurinol, CK -18, adiponectin, GPT, GOT, US, FL size and grade

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Review of Literature	
Non-alcoholic fatty liver	1
Uric Acid	24
 Blood markers as a non-invasive tool i 	in NAFLD 44
Aim of the work	64
Patients and Methods	65
Results	83
Discussion	108
Conclusion	117
Limitations of the study	118
Recommendations	119
Summary	120
References	125
Arabic Summary	

List of Abbreviations

Abb.	Full term
ALP	Alkaline phosphates
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
Chol	Total Cholesterol
CK-18	Cytokeratin 18
CRP	C-reactive protein
GGT	1
HDL-C	Gamma glutamyl transpeptidase
	High density lipoprotein cholesterol Interleukin-1
IL-1	
IL-18	Interleukin-18
IL-6	Interleukin-6
LDL-C	Low density lipoprotein cholesterol
MetS	Metabolic Syndrome
MRS	Magnetic resonance spectroscopy
NAFLD	Non alcoholic fatty liver disease
NASH	Non alcoholic steatohepatitis
NO	Nitric oxide
RAS	Renin angiotensin system
T2DM	Type 2 diabetes mellitus
TGs	Triglycerides
TNF-a	Tumor necrosis factor-a
UA	Uric acid
UDCA	Ursodeoxycholic acid
US	Ultrasonography
XO	Xanthine oxidase

List of Tables

Table	e No.	Title	Page No.	
Table (1):	_		oution of Study	85
Table (2):			ameters of the	87
Table (3):			es level in both	89
Table (4):			in both study	91
Table (5):			data in both	92
Table (6):	Uric acid leve	l at baselin	ne and after 3 study groups	
Table (7):	the study grou	ps at baseli	parameters in ne and after 3	97
Table (8):	Liver transamin months of treat		eline and after 3 study groups	101
Table (9):	_	•	transaminases	103
Table (10):			rs in both study tment	105
Table (11):			caphic data in ore and after	191

List of Figures

Fig. No.	Title Page No.	
Figure (1):	The "two hits" hypothesis of NAFLD	11
Figure (2):	Structural formula of uric acid	24
Figure (3):	Hypouricemic drugs (FDA allopurinol drug insert)	37
Figure (4):	Mechanism of Action of Allopurinol and Oxipurinol (FDA allopurinol drug insert)	39
Figure (5):	The study flow chart.	67
Figure (6):	Standard curve of CK-18 concentration against optical density.	76
Figure (7):	Standard curve of adiponectin concentration against optical density	81
Figure (8):	Mean Baseline Serum Uric Acid Level in placebo and treatment groups.	88
Figure (9):	Mean baseline lipid profile parameters level in both study groups	88
Figure (10):	Mean Baseline liver transaminases in placebo and treatment groups.	90
Figure (11):	Fatty liver grades amoung placebo group patients.	93
Figure (12):	Fatty liver grades amoung treatment group patients	93
Figure (13):	Uric acid level percent change in placebo and treatment groups	95
Figure (14):	Serum cholesterol level percent change in placebo and treatment groups.	98
Figure (15):	Serum triglycerides level percent change in placebo and treatment groups	98