Comparison of the Sensitivity and Specificity of DWIBS and Contrast Enhanced T1Wi Sequences in Characterization of Suspicious Mammography Lesions

Thesis

Submitted for partial fulfillment of Master Degree **in Radiodiagnosis**

Presented by May Adel Abdel-Monem El-Samahy

M.B., B. Ch. Faculty of Medicine Ain Shams University

Supervised by

Prof. Dr. Sherine Kadry Amin

Professor of Radiology
Faculty of Medicine- Ain Shams University

Dr. Haytham Mohamed Nasser

Lecturer of Radiology
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2017

و فى ل

سورة طه الآيه رقم 114

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Sherine Kadry Amin,** Professor of Radiology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

Really I can hardly find the words to express my gratitude to Dr. Haytham Mohamed Nasser, Lecturer of Radiology, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

May Adel Abdel-Monem El-Samahy

Contents

List of Abbreviations	
List of Tables	iii
List of Figures	
Introduction	
Aim of the work	3
Review of literature	4
Radiological anatomy	4
Pathology	34
Mammographic and MRI manifestations of suspicio	us
breast lesions	60
Patients and Methods	96
Results	99
Discussion	109
Illustrative cases	114
Summary and Conclusion	132
References	134
Arabic Summary	

List of Abbreviations

ACR : American college of radiology

ADC : Apparent Diffusion Coefficient

BI-RADS: Breast Imaging and Reporting Data

Systems

CC : Cranio caudal

DCE-MRI: Dynamic Contrast Enhanced Magnetic

Resonance Imaging

DCIS : Ductal Carcinoma Insitu

DWI : Diffusion Weighted Imaging

DWIBS : Diffusion Weighted Imaging with Back-

ground Suppression

ERT : Estrogen Replacement Therapy

IDC : Infiltrative Ductal Carcinoma

IDC-NOS: Infiltrative Ductal Carcinoma Not

Otherwise Specified

IDC-NST : Infiltrative Ductal Carcinoma of no special

type

ILC : Infilrative Lobular Carcinoma

LCIS : Lobular Carcinoma Insitu

MIP : Maximum Intensity Projection

MLO : Medio-lateral Oblique

List of Abbreviations (Cont.)

MRI : Magnetic Resonance Imaging

NMLE : Non-mass like enhancement

SA : Sclerosing adenosis

STIR : Short T1 Inversion Recovery

T1Wi's : T1 Weighted Images

T2Wi's : T2 Weighted Images

TDLU : Terminal Ductal Lobular Unit

TNM : Tumor, Nodes, metastasis

List of tables

Table	Title				Page
1	Relationship between	T1	SI	and	101
	histopathology				
2	Relationship between	T2	SI	and	102
	histopathology				
3	Comparison between DV	WIBS	and I	DCE-	106
	MRI				

List of Figures

Fig.	Title	Page
1	Milk lines	5
2	Surface anatomy of the breast	7
3	Adult female breast anatomy	8
4	Ductal tree	9
5	Breast lobules	10
6	Topographic anatomy of the breast	11
7	Blood supply of the breast	13
8	Axillary lymph-node groups	15
9	Axillary lymph-node surgical	16
	classification	
10	Breast lymphatic drainage	17
11	CC &MLO view	18
12	ACR A	20
13	ACR B	20
14	ACR C	21
15	ACR D	22
16	Normal mammographic anatomy	24
17	Pre & post-contrast axial T1Wis	26
18	Kinetic curves	28
19	Degrees of back-ground contrast	30
	enhancement	
20	Axial DWIBS and Post-Contrast Image	33
21	Histo-pathological findings in women	34
	seeking investigations for a breast lump.	
22	Cancer incidence in different quadrants	45
23	Lobular Neoplasia	50
24	LCIS microscopic picture	50
25	DCIS illustration	52
26	DCIS microscopic picture	52
27	IDC illustration	55
28	IDC microscopic picture	55

List of Figures (Cont.)

Fig.	Title	Page
29	Microscopic picture of Paget's disease.	57
30	Items in a mammography report.	61
31	Asymmetry on mammo-gram	64
32	Architectural distortion on mammo- gram	65
33	Ultrasound for architectural distortion	66
34	Round micro-calcifications	67
35	Micro-calcifications with regional distribution	68
36	Clustered pleo-morphic micro-calcifications	69
37	Linear pleo-morphic micro-calcifications	70
38	Segmental linear micro-calcifications	71
39	Benign calcifications	74
40	Suspicious calcifications	76
41	Different categories of calcifications	77
42	Normal mammogram	78
43	Mammogram showing oil-cyst	79
44	Mammogram showing BI-RADS III lesion	80
45	Follow-up of BI-RADS III lesion	81
46	Mammo-gram with BI-RADS IV lesion	82
47	BI-RADS V lesion on mammo-gram	82
48	BI-RADS VI lesion on mammo-gram	83
49	Clock position on breast	84
50	Axial T2Wi showing a lesion	85
51	Different distributions of contrast enhacement	86
52	Suspicious contrast enhancement patterns	88
53	Kinetic curves	90

List of Figures (Cont.)

Fig.	Title	Page
54	Sagiital image of multi-centric IDC	92
55	Axial DWI and ADC map of breast lesion	93
56	Axial DWI and DWIBS image of a lesion	94
57	Axial DWIBS and post-contrast image of a lesion	95
58	Kinetic curves	97
59	Ratio of benign and malignant lesions	99
60	Illustration of positive and negative family history	100
61	Illustration of ratios of T1 SI in different lesions	101
62	Contrast enhancement patterns in relation to histo-pathology	103
63	DWIBS image characteristics in relation to histo-pathology	104
64	ROC curve analysis	105
65	Mean values of ADC of benign and malignant lesions	105

Introduction

Being the most common invasive cancer to affect females worldwide, screening aiming at early detection and thereby improving outcomes of breast cancer has always been an issue of concern⁽¹⁾.

For decades conventional X-ray mammograms have been widely used for this purpose. This however resulted in many unnecessary biopsies, since almost 50% of the biopsies following suspicious mammograms were found to be negative. The anticipation associated with waiting for unnecessary biopsies after query mammography findings has created a real need for more informative imaging techniques (2, 3,6).

To meet this growing need, MR imaging of the breast has become a region of interest for researchers worldwide.

Diffusion weighted MR imaging, which depends on the micro structural diffusivity of water between the cells, has been employed to help characterize different breast lesions. Diffusion weighted imaging has proved high sensitivity and specificity in this insight, yet it must be combined with administration of contrast enhanced imaging and the acquisition of dynamic contrast enhanced MR images for proper characterization (2,4,5).

DCE-MR imaging of the breast helps depict malignant lesions by showing their pathological vascularization. The kinetics of contrast enhancement

depends upon the capillary permeability, micro vascular density and diffusivity. These factors affect the rate of initial contrast uptake, wash-out as well as the heterogeneity of the lesion.

Combining the pattern of contrast enhancement with the morphologic features allows high sensitivity and specificity ^(7,8).

The long examination time as well as the need for intravenous contrast were found to be practical limitations of the DCE-MRI of the breast. This is especially appreciated in patients with contra-indications to MR contrast material injection (2,4,5).

A newly introduced MRI sequence DWIBS, which is the abbreviation of Diffusion Weighted Imaging with Background Suppression, allows the acquisition of volumetric diffusion weighted images with high lesion-to-background contrast, hence making the use of contrast material unnecessary. DWIBS is said to outweigh the conventional DW imaging due to its short time of acquisition as well^(2,4).

The use of DWIBS approach is thought to decrease the rate of unnecessary biopsies from false mammography results without the need for a lengthy MRI procedure or the need for IV contrast administration⁽²⁾.

Aim of the Work

The purpose of this study was to determine the accuracy of DWIBS MR imaging in comparison to the DEC MR imaging in characterizing suspicious mammography lesions.