Ain Shams University
Faculty of Pharmacy
Pharmacology and Toxicology
Department



# Study on the potential neuroprotective effect of tetramethylpyrazine in rotenone-induced model of Parkinson's disease in rats

A thesis submitted for the partial fulfillment of requirements for the degree of Doctor of Philosophy (PhD) in Pharmaceutical Sciences (Pharmacology & Toxicology)

## $\mathbf{\underline{By}}$

## **Haidy Effat Michel Koressa**

M.Sc. degree in Pharmaceutical Sciences, Pharmacology and Toxicology (2013)
Assistant Lecturer of Pharmacology and Toxicology,
Faculty of pharmacy, Ain Shams University

### Under the supervision of

## Prof. Dr. Ahmed Mohey Eldin A. Tawab

Professor of Pharmacology, Faculty of Medicine, Ain Shams University

## **Dr. Mariane George Tadros**

Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

#### Dr. Ahmed Esmat Abdel-Razek

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy Ain Shams University (2016)

## **Acknowledgements**

Acknowledgements can never be made to all those who have nourished my intellectual life. Still I must try to give credit where credit is due.

Above all, utmost appreciation and gratitude is to the Almighty God for the divine intervention in the academic endeavor.

While carrying out my research, I have been helped by generous professors who spared no effort to give me a hand. Without their painstaking effort and unstinted help, this research would have been impossible.

I am greatly thankful to my great Professor and Thesis advisor, Ahmed Mohey Eldin A. Tawab, Professor of Pharmacology, Department of Pharmacology, Faculty of Medicine, Ain Shams University, for his indispensable help throughout the whole thesis work as well as his unwavering guidance, continuous support and positive insights.

I am also greatly thankful to Dr. Mariane George Tadros, Associate Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her indispensable help throughout the whole Thesis work as well as her continuous guidance, and support.

I would like to thank Dr. Ahmed Esmat, lecturer of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of

Pharmacy, Ain Shams University, for his continuous help and support throughout the whole thesis work, especially in the western blot technique.

I would like to thank Dr. Adel Bakir, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his great effort in accomplishing the histological investigation.

I would like to thank Mr. Moussa Hussein and Mr. Mohamed Amin, The National Cancer Institute, Cairo University, for his effort in staining the slides for immunohistochemical investigations.

I would like also to thank my dear colleagues Esther Tharwat, Eman Mantawy and Diana Magdy, Department of Pharmacology and Toxicology, Ain Shams University, for their generous help and support.

It is my greatest pleasure to convey my deepest thanks to all my Professors, Doctors and colleagues in the department of Pharmacology and Toxicology, Ain Shams University, for providing me knowledge and experiences.

Finally, I would like to express my deep gratefulness and thanks to my family for their continuous moral, emotional and financial support.

# **List of Contents**

| Subject                            | Page |
|------------------------------------|------|
| Introduction                       | 1    |
| I- Parkinson's Disease (PD)        | 1    |
| I-1: Background                    | 1    |
| I-2: Diagnosis of PD               | 2    |
| I-3: Epidemiology of PD            | 4    |
| I-4: Disease frequency             | 5    |
| I-5: Lifestyle factors and PD      | 8    |
| I-6: Pathophysiology of PD         | 18   |
| I-7: Neurotoxin-based models of PD | 29   |
| I-8: Medical management of PD      | 40   |
| I-9: Concluding remarks            | 46   |
| II- Tetramethylpyrazine (TMP)      | 47   |
| II-1: Pharmcodynamics              | 48   |
| II-2: Pharmacokinetics             | 56   |
| Aim of the work                    | 59   |
| Materials and Methods              | 61   |
| I- Experimental Design             | 61   |
| II- Animals                        | 64   |
| III- Materials                     | 64   |
| IV- Methods                        | 73   |
| V-Statistical analysis             | 103  |

| Results                        | 104 |
|--------------------------------|-----|
| Discussion                     | 157 |
| <b>Summary and Conclusions</b> | 168 |
| References                     | 175 |
| Arabic summary                 |     |

# **List of Abbreviations**

| 3-MT   | 3-Methoxytramine                                 |
|--------|--------------------------------------------------|
| 6-OHDA | 6-Hydroxydopamine                                |
| Ab     | Antibody                                         |
| ABB    | Antibody binding buffer                          |
| ALT    | Alanine aminotransferase                         |
| ASK1   | Apoptosis signal-regulating kinase 1             |
| AST    | Aspartate aminotransferase                       |
| Αβ     | Amyloid β peptide                                |
| BBB    | Blood-brain barrier                              |
| BCA    | Bicinchoninic acid                               |
| Blk    | Blank                                            |
| BMI    | Body mass index                                  |
| BNIP3  | Bcl-2/adenovirus E1B 19kDa interacting protein 3 |
| CI     | Confidence interval                              |
| COMT   | Catechol-O-methyl-transferase                    |
| COX2   | Cyclooxygenase 2                                 |
| CXCR4  | Chemokine (C-X-C motif) receptor 4               |
| DA     | Dopamine agonists                                |
| DAMP   | Damage-associated molecular patterns             |
| DOPAC  | Dihydroxyphenylacetic acid                       |
| ERK    | extracellular signal-regulated kinase            |
| GCLc   | Catalytic subunit of c-glutamylcysteine ligase   |
| HIF-1α | Hypoxia-inducible factor-1 α                     |

| HMGB1            | High-mobility group box-1 protein                           |
|------------------|-------------------------------------------------------------|
| HO-1             | Heme oxygenase-1                                            |
| HVA              | Homovanillic acid                                           |
| IFN-γ            | Interferon-γ                                                |
| IGFBP3           | Insulin growth factor binding protein 3                     |
| iNOS             | Inducible nitric oxide synthase                             |
| JNK              | c-jun N-terminal kinase                                     |
| LBs              | Lewy bodies                                                 |
| L-DOPA           | 3,4 Dihydroxy-L-phenylamine                                 |
| MAOI             | Monoamine oxidase inhibitor                                 |
| MAPK             | Mitogen-activated protein kinase                            |
| MDR              | Multidrug resistance                                        |
| MPP <sup>+</sup> | 1-Methyl-4-phenylpyridinium                                 |
| MPTP             | 1-Mthyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine              |
| MSA              | Multiple system atrophy                                     |
| NF-κB            | Nuclear Factor kappa B                                      |
| NO               | Nitric oxide                                                |
| NOX2             | NADPH oxidase 2                                             |
| Nrf2             | Nuclear factor erythroid 2-related factor 2                 |
| NSB              | Non-specific binding                                        |
| OHSCs            | Organotypic hippocampal slice cultures                      |
| PD               | Parkinson's disease                                         |
| PET              | Positron emission tomography                                |
| PGC-1α           | Peroxisome proliferator-activated receptor-c coactivator-1α |

| PIC   | Protease inhibitor cocktail                |
|-------|--------------------------------------------|
| pNA   | p-nitroaniline                             |
| POAG  | Primary open-angle glaucoma                |
| REM   | Rapid eye movement                         |
| ROS   | Reactive oxygen species                    |
| SDF-1 | Stromal cell-derived factor-1              |
| SNpc  | Substantia nigra pars compacta             |
| SOD   | Superoxide dismutase                       |
| SPECT | Single-photon emission computed tomography |
| TEMED | Tetramethylethylenediamine                 |
| TLR4  | Toll-like receptor-4                       |
| TMB   | Tetramethylbenzidine                       |
| TMP   | Tetramethylpyrazine                        |
| TNF-α | Tumor necrosis factor                      |
| UPDRS | Unified Parkinson's disease rating scale   |
| VEGF  | Vascular endothelial growth factor         |

# **List of Figures**

| Figure<br>Number | Figure Title                                                                     | Page |
|------------------|----------------------------------------------------------------------------------|------|
| i                | Locations of PD pathology                                                        | 19   |
| ii               | Possible mechanisms responsible for dopaminergic neurodegeneration in PD         | 22   |
| iii              | Oxidation of dopamine                                                            | 23   |
| iv               | The neuroinflammatory and oxidative stress response in PD                        | 26   |
| V                | Comparison of the chemical structures of 6-hydroxydopamine (6-OHDA) and dopamine | 29   |
| vi               | The chemical structures of MPTP and MPP+                                         | 32   |
| vii              | The chemical structure of Paraquat                                               | 33   |
| viii             | The chemical structure of rotenone                                               | 34   |
| ix               | Mechanism of action of neurotoxins used to model Parkinson's disease             | 39   |
| X                | Pharmacological treatment options of PD                                          | 40   |

| xi   | Chemical structure of TMP                                                               | 47  |
|------|-----------------------------------------------------------------------------------------|-----|
| xii  | Experimental design                                                                     | 63  |
| xiii | Locomotor activity detector                                                             | 72  |
| 1    | Standard calibration curve for protein                                                  | 80  |
| xiv  | Schematic representation for Nrf2 assay                                                 | 88  |
| 2    | Standard calibration curve for Nrf2                                                     | 92  |
| 3    | Standard calibration curve for HO-1                                                     | 97  |
| 4    | Standard calibration curve for pNA                                                      | 102 |
| 5    | Effects of different doses of TMP on rotenone-<br>induced catalepsy in rats (bar test)  | 106 |
| 6    | Effects of different doses of TMP on rotenone-<br>induced catalepsy in rats (grid test) | 107 |
| 7    | Effects of different doses of TMP on rotenone-induced kypokinesia in rats               | 110 |
| 8    | Representative photomicrographs of H&E-<br>stained rat midbrain sections                | 112 |
| _    |                                                                                         |     |

| 9  | Representative photomicrographs of H&E-<br>stained rat whole striatal sections                                                                                                                                                                                       | 113 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10 | Representative photomicrographs of toluidine-<br>blue stained rat midbrain sections                                                                                                                                                                                  | 115 |
| 11 | Representative photomicrographs of toluidine-<br>blue stained rat striatal sections                                                                                                                                                                                  | 116 |
| 12 | Quantitative analysis of midbrain and striatal neuronal degeneration calculated as the percentage of degenerated neurons in comparison to total neurons                                                                                                              | 117 |
| 13 | Immunohistochemical staining of midbrain TH positive cells of the control group, rotenone-treated group, TMP (10mg/kg) + rotenone-treated group, TMP (20mg/kg) + rotenone-treated group, TMP (40mg/kg) + rotenone-treated group and TMP-alone treated group.  (200X) | 119 |
| 14 | Immunohistochemical staining of striatal TH positive cells of the control group, rotenone-treated group, TMP (10mg/kg) + rotenone-treated group, TMP (20mg/kg) + rotenone-treated group, TMP (40mg/kg) + rotenone-treated group and TMP-alone treated group.  (200X) | 120 |
| 15 | Quantitative image analysis for TH immunohistochemical staining expressed as mean area% (A%)                                                                                                                                                                         | 122 |
| 16 | Immunohistochemical staining of midbrain α-synuclein positive cells of the control group, rotenone-treated group, TMP (10mg/kg) + rotenone-treated group, TMP (20mg/kg) + rotenone-treated group, TMP (40mg/kg) + rotenone-treated group and TMP-alone treated       | 124 |

|    | group. (200X)                                                                                                                                                                                                                                                                |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    |                                                                                                                                                                                                                                                                              |     |
| 17 | Immunohistochemical staining of striatal α-synuclein positive cells of the control group, rotenone-treated group, TMP (10mg/kg) + rotenone-treated group, TMP (20mg/kg) + rotenone-treated group, TMP (40mg/kg) + rotenone-treated group and TMP-alone treated group. (200X) | 125 |
| 18 | Quantitative image analysis for immunohistochemical staining of α-synuclein expressed as mean area% (A%)                                                                                                                                                                     | 127 |
| 19 | Effect of TMP on caspase-3 activity in rats subjected to chronic rotenone administration expressed as percentage of control group.                                                                                                                                           | 131 |
| 20 | Western blot analysis of midbrain and striatal Bax/Bcl2 ratio                                                                                                                                                                                                                | 133 |
| 21 | Immunohistochemical staining of midbrain NF-<br>κB positive cells of the control group, rotenone-<br>treated group, TMP (20mg/kg) + rotenone-<br>treated group and TMP-alone treated group.<br>(200X)                                                                        | 135 |
| 22 | Immunohistochemical staining of striatal NF-κB positive cells of the control group, rotenone-treated group, TMP (20mg/kg) + rotenone-treated group and TMP-alone treated group. (200X)                                                                                       | 136 |
| 23 | Quantitative image analysis for immunohistochemical staining of midbrain and striatal NF-κB expressed as mean area% (A%)                                                                                                                                                     | 138 |
| 24 | Immunohistochemical staining of midbrain COX-2 positive cells of the control group, rotenone-treated group, TMP (20mg/kg) + rotenone-treated group and TMP-alone treated                                                                                                     | 140 |

|    | group. 200X                                                                                                                                                                             |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 25 | Immunohistochemical staining of striatal COX- 2 positive cells of the control group, rotenone- treated group, TMP (20mg/kg) + rotenone- treated group and TMP-alone treated group. 200X | 141 |
| 26 | Quantitative image analysis for immunohistochemical staining of midbrain and striatal COX2 expressed as mean area% (A%)                                                                 | 143 |
| 27 | Immunohistochemical staining of midbrain iNOS positive cells of the control group, rotenone-treated group, TMP (20mg/kg) + rotenone-treated group and TMP-alone treated group. 200X     | 145 |
| 28 | Immunohistochemical staining of striatal iNOS positive cells of the control group, rotenone-treated group, TMP (20mg/kg) + rotenone-treated group and TMP-alone treated group.  200X    | 146 |
| 29 | Quantitative image analysis for immunohistochemical staining of midbrain and striatal iNOS expressed as mean area% (A%)                                                                 | 148 |
| 30 | Western blot analysis of midbrain and striatal DJ-1 expression                                                                                                                          | 150 |
| 31 | Effect of TMP on Nrf2 level in rats subjected to chronic rotenone administration expressed as percentage of control group                                                               | 153 |
| 32 | Effect of TMP on HO-1 level in rats subjected to chronic rotenone administration expressed as percentage of control group                                                               | 156 |

# **List of tables**

| Table<br>Number | Table Title                                                                                                                       | Page |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| i               | Pharmacokinetic analysis of tetramethylpyrazine in rat blood and brain                                                            | 57   |
| ii              | Toxicity of tetramethylpyrazine                                                                                                   | 58   |
| 1               | Effects of different doses of TMP on rotenone-<br>induced catalepsy in rats                                                       | 105  |
| 2               | Effects of different doses of TMP on rotenone-induced hypokinesia                                                                 | 109  |
| 3               | Effect of different doses of TMP on TH expression in the midbrains and striata of rotenone-treated rats, expressed as A%          | 121  |
| 4               | Effect of different doses of TMP on α-synuclein expression in the midbrains and striata of rotenone-treated rats, expressed as A% | 126  |
| 5               | Effect of TMP on caspase-3 activity (nmol/min/mg protein) in the midbrains and striata of rotenone-treated rats                   | 130  |
| 6               | Effect of TMP on NF-kB expression in the midbrains and striata of rotenone-treated rats, expressed as A%                          | 137  |
| 7               | Effect of TMP on COX2 expression in the midbrains and striata of rotenone-treated rats, expressed as A%                           | 142  |
| 8               | Effect of TMP on iNOS expression in the midbrains and striata of rotenone-treated rats,                                           | 147  |