

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار عن الغبار عن الغبار عن 20-40% عن 25-25 مئوية ورطوبة نسبية من 20-40% عن درجة حرارة من 25-25 مئوية ورطوبة نسبية من 25-25 To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بالرسالة صفحات لم ترد بالاصل

GEOLOGICAL STUDIES OF SOME SURFACE SEDIMENTS WESTERN NILE DELTA AND THEIR POSSIBLE UTILIZATION AS BUILDING MATERIALS

A thesis Submitted to the Faculty of Science, Zagazig University, Benha Branch

By
MEDHAT SOBHY EL-SAYED EL-MAHLLAWY
(B. Sc., Geology)

In Partial Fulfillment of the Requirements for the Degree of Master of Science (Geology)

Housing and Building Research Centre '1999

Acknowledgement

Praise be to Allah, Lord of the worlds, by whose grace this work has been completed.

The author wishes to express his deepest gratitude to Dr. H. A. El-Sheikh, Head of Geology Department, Faculty of Science, Zagazig University, Benha Branch for his helpful supervision and introducing many facilities during the progress of this work.

Also, my sincere and deepest gratitude to Dr. S. M. Ahmed, Ass. Prof. at Geol. Dept., Fac. Sci., Zagazig Univ., Benha Branch for his fruitful supervision, valuable guidance and continuous encouragement.

I am indeed indebted to Dr. H. S. Hassan, Researcher at Raw Materials and Processing Dept., Housing and Building Research Centre (H.B.R.C.)for suggesting the point of study, constant supervision and fruitful discussions.

I would like to express my deep gratitude to Dr. R. Osman, Ass. Prof. at Geol. Dept., Fac. Sci., Zagazig Univ., Benha Branch and Geologist R. Abd El-Salam Farg at Quarries Management, El-Beheira Governorate for their helping in the field.

Also, my deepest gratitude to all the staff members at Raw Materials and Processing Dept., H.B.R.C. especially to Prof. Dr. A. M. Sharara, Prof. Dr. A. A. Kamel for their generous help and also to Dr. N. G. Abd El-Ghafour for his guidance in the experimental work.

Finally, my great thanks and appreciation to my colleagues and friends at Raw Materials and Processing Dept., H.B.R.C. for their sincere cooperation and unlimited assistance.

GEOLOGICAL STUDIES OF SOME SURFACE SEDIMENTS WESTERN NILE DELTA AND THEIR POSSIBLE UTILIZATION AS BUILDING MATERIALS

ABSTRACT

After the construction of the Aswan High Dam (1970) the building brick industry became almost completely derived their raw materials from its easily obtained resources (Nile-silt). In addition, the suitable gravels which fall within the standard specification limits of natural aggregates used in concrete are not usually available. Therefore, shale/clay deposits become a suitable substitution for Nile silt as well as carbonate aggregates for the gravels.

The present work dealt with studying the lithological, mineralogical, textural and chemical compositions and aspects of some surface sediments representing five rock units (Hagif Formation, Muluk Formation, Qataji Formation, Diba Formation and stabilized Sand dunes), west of Nile Delta through studying their stratigraphy in addition to their textural, mineralogical and chemical composition to elucidate their source rock, agent of transportation and depositional environment.

Furthermore, the possible utilization of some studied clay and carbonate (dolostone and sandy limestone) raw materials in building purposes also was carried out through studying their technological characteristics (chemical and physico-mechanical properties) viewpoints. Some of Egyptian and American Standards Specifications were followed.

CONTENTS

PART (1): GEOLOGY AND SEDIMENTOLOGY OF SOME SURFACE SEDIMENTS WEST OF NILE DELTA AREA

	Page No.
CHAPTER (1): INTRODUCTION	
1.1. Locality	1
1.2. Aim and Scope of the Present Study	2
1.3. Previous Work	3
CHAPTER (2): LITHOSTRATIGRAPHY	
2.1. Hagif Formation	13
2.1.1. Clastic Member	15
2.1.2. Carbonate-Clastic Member	15
2.2. Muluk Formation	18
2.3. Qataji Formation	21
2.4. Diba Formation	21
2.4.1. Sandy Member	24
2.4.2. Gravely Member	26
2.5. Stabilized Sand Dunes	29
CHAPTER (3): METHODS AND TECHNIQUES	
3.1.Textural Analysis	31
3.1.1 Mechanical analysis of sand	31

3.1.1.1. Grain size parameters	32
3.1.1.2. Scatter plotting diagrams	36
3.1.1.3. Statistical parameters of Friedman	37
3.1.1.4. Grain size image	38
3.1.1.5. Discriminant function of Sahu	39
3.1.2. Textural analysis of clay	41
3.2. Mineralogical Analyses	41
3.2.1. X-ray diffraction technique	42
3.2.2. Microscopic techniques	43
3.2.2.1. Polarized microscope	43
3.2.2.2. Scanning electron microscopy	44
3.2.3. Thermal analyses	44
3.3. Chemical Analyses	44
3.3.1. X-ray fluorescence	45
3.3.2. Atomic absorption spectrometer	45
3.3.3. The calorimetric technique	46
3.3.4. Flame photometer	46
3.3.5. Gravimetric analysis	47
3.3.6. Soluble cations and anions determination	47
CHAPTER (4): RESULTS AND DISCUSSIONS	
4.1. Results of Sand	48
4.1.1. Mechanical analysis	48
4.1.1.1. Mean size	48
4.1.1.2. Inclusive graphic standard deviation	50
4.1.1.3. Inclusive graphic skewness	51

4.1.1.4. Transformed graphic kurtosis	52
4.1.1.5. Scatter plotting diagrams	53
4.1.1.6. Statistical parameters of Friedman	56
4.1.1.7. Grain size image	57
4.1.1.8. Discriminant function of Sahu	58
4.1.2. Mineralogical analysis	58
4.1.2.1. Light fraction	58
4.1.2.2. Heavy fraction	59
4.1.3. Discussion	66
4.2. Results of Clay	70
4.2.1. Textural analysis	70
4.2.2. Mineralogical analyses	70
4.2.2.1. X-ray diffraction technique	70
4.2.2.2. Scanning electron microscopy	71
4.2.2.3. Thermal analyses	72
4.2.3. Chemical analyses	74
4.2.3.1. Silicate analysis	74
4.2.3.2. Water soluble cations and anions	75
4.2.4. Discussion	76
4.3. Results of Limestone	80
4.3.1. Petrographic examination	80
4.3.1.1. Limestone lithofacies	80
4.3.1.2. Dolostone lithofacies	83
4.3.2. Mineralogical analyses	84
4.3.2.1. X-ray diffraction technique	84
4.3.2.2. Thermal analyses	84

4.3.3. Chemical analyses	85
4.3.3.1. Silicate analysis	86
4.3.3.2. Water soluble cations and anions	86
4.3.4. Discussion	87
PART (2): TECHNOLOGICAL CHARACTERISTICS	
OF SOME SURFACE SEDIMENT WEST	
OF NILE DELTA AREA	
CHAPTER (5): INTRODUCTION	90
CHAPTER (6): EXPERIMENT WORK	
6.1. Clay Articles	98
6.1.1. Plasticity	98
6.1.2. Shaping of the test articles	99
6.1.3. Drying behaviour (Bigot's Curve)	100
6.1.4. Firing of the test articles	101
6.1.5. Additives	101
6.1.6. Physical and mechanical properties	101
6.1.6.1. Firing volume changes	102
6.1.6.2. Bulk density	102
6.1.6.3. Water absorption	102
6.1.6.4. Compressive strength (Dry / Wet)	103
6.2. Carbonate Cubes and Aggregates	104
6.2.1. Sieve analysis of coarse aggregates	104
6.2.2 Unit weight and porosity	105

6.2.3. Apparent specific gravity	106
6.2.4. Soundness by use of Sodium Sulfate solution	106
6.2.5. Fine particles	107
6.2.6. Potential reactivity of aggregates	107
6.2.7. Determination of crushing strength (Crushability)	109
6.2.8. Resistance to abrasion in the Los Angeles machine	109
CHAPTER (7): RESULTS AND DISCUSSIONS	
7.1. Clay Without Additives	111
7.2. Clay With Additives	114
7.2.1. Effect of additives	115
7.2.2. Physical and mechanical properties (Clay with additives)	116
7.2.2.1. The sand additive	117
7.2.2.2. The grog additive	120
7.3. Dolostone Cubes	123
7.4. Sandy Limestone Aggregates	124
CHAPTER (8): SUMMARY AND CONCLUSIONS	126
REFERENCES	135

LIST OF TABLES

Table No.		Following Page
1	Percentiles and size parameters calculated according to	
	Folk and Ward (1975).	48
2	Rang and average size distribution of the studied sand	
	samples among size classes.	48
3	Rang and average sorting distribution of the studied	
	sand samples among sorting classes.	50
4	Rang and average skewness distribution of the studied	
	sand samples among skewness classes.	51
5	Rang and average transformed graphic kurtosis	
	distribution of the studied sand samples among	
	kurtosis classes.	52
6	Statistical parameters of the studied sand samples	
	according to Freidman (1961, 1967).	57
7	The values of C&M according to Passega (1957,1969)	
	for the studied sand samples.	57
8	Distribution of the studied sand samples according to	
	C-M diagram (Passega and Pyramjee, 1969).	57
9	The discriminant functions according to Sahu (1964).	58
10	Distribution of the sediments among different depo-	
	sitional environments according to Sahu (1964).	58
11	Frequency distribution of opaque and non-opaque	
	minerals of medium sand fraction.	60
12	Frequency distribution of opaque and non-opaque	•
	minerals of fine and very fine sand fraction.	60

Γable No.	Follow	wing Page
13	Average frequency percentages of the heavy minerals	
	recorded in fine and very fine sand fractions.	60
14	Average frequency percentages of the heavy mineral	
	recorded in medium sand fraction.	60
15	Detrital mineral suites characteristic of source rock type	
	(Hubert, 1971).	68
16	Data of the grain size analysis in weight percentage for	
	the studied clay samples.	70
17	The percentage of the grain size distribution for the	
	studied clay samples.	70
18	The percentage of clay minerals for the studied clay	
	samples.	71
19	Results of differential thermal and thermogravimetric	
	analyses for the studied clay samples.	72
20	Results of the chemical analysis for the studied clay	
	samples.	74
21	Differential thermal and thermogravimetric analyses for	
	the studied carbonate samples.	84
22	Results of the chemical analysis for the studied carbonate	
	samples.	85
23	Results of chemical analysis for the used additive materials.	115
24	Plasticity measurements of the clay additive mixtures	
	according to Pfefferkorn's technique.	115
25	Data of physical and mechanical properties of the used	
	fired clay articles with sand and grog additives.	116
26	The average of the chemical and physico-mechanical	
	properties of the studied dolostone cubes at locality (V).	123
27	Chemical and physico-mechanical properties of the	
	studied sandy limestone aggregates at locality (X).	123

LIST OF FIGURES

Figure	No. Follow	ng Page
1	Location map of the study area.	1
2	Geological map of the study area, after Sayed (1984).	12
3	Cross bedded sandstone sandwitch between the clay deposits and some	
	roots and rootlets occur at the top of Clastic Member, Hagif Formation,	
	locality no.VII, NW Wadi El-Natrun area.	15
4	Field panoramic view of the Clastic Member, Hagif Fm., locality	1.5
	no. VII, NW Wadi El-Natrun area.	15
5	Geological columnar section at locality no.VII, NW Wadi	
	El-Natrun area.	15
6	Geological columnar section at locality no.V, NW Wadi	
	El-Natrun area.	17
7	Geological columnar section at locality no.IV, NW Wadi	
	El-Natrun area.	20
8	A photograph showing the clay deposits at the Muluk Formation,	
	locality no.IV, NW Wadi El-Natrun area.	20
9	A photograph showing the Qataji Formation at locality no.XI, east	
	of Cairo- Alexandria desert road.	23
10	Geological columnar section at locality no.X, west of Cairo- Alexandria	
	desert road.	23
11	Geological columnar section at locality no.Xl, east of Cairo- Alexandria	
	desert road.	23
12	A photograph showing the Sandy Member of Diba Formation, locality	
	no.III, west of Cairo-Alexandria desert road.	25