STUDY OF PROTEIN C, PROTEIN S AND ANTITHROMBIN III IN SEPTIC NEWBORNS

Thesis

Submitted for partial fulfillment Of The MD Degree Of Pediatrics

Submitted by

Mohamed Salah Eldin Mohamed Abdel Kader

M.B.B. Ch, Msc Cairo University

Under supervision of

DR Amal El Beshlawy

Professor of Pediatrics Faculty of Medicine Cairo University

DR Ibrahim El Araby

Professor of Pediatrics
Faculty of Medicine
Misr University for Science and Technology

Dr Heba Abou Hussein

Assistant Professor of Pediatrics Faculty of Medicine Cairo University

Dr Heba Hassan Abou-Elew

Assistant Professor of Clinical Pathology
Faculty of Medicine
Cairo University

ABSTRACT

Study of protein c, protein s and antithrombin III in septic newborns

(KEY WORDS): Neonatal sepsis, Protein C, Protein S, Antithrombin III, Disseminated intravascular coagulation (DIC), Physiologic inhibition system of coagulation.)

Neonatal sepsis is a major cause of neonatal mortality and morbidity. Sepsis greatly affects the coagulation system of the affected neonates. We measured protein c, protein s and antithrombin III levels in thirty septic neonates and thirty normal neonates served as control group. The study revealed the effect of decreased levels of the physiologic inhibition system of coagulation (PISC) including protein c, protein s and antithrombin III on further development of thromboembolic complications in septic neonates, as 30% of the studied cases developed disseminated intravascular coagulation (DIC). Protein C concentrates can act as adjuvant therapy to antibiotics.

LIST OF TABLES

Table	Title	Page
1	Role of 'contact factors' in integrating body defence mechanisms	9
2	Haemostasis changes during pregnancy	26
3	Causes of neonatal thrombocytopenia	27
4	Bacterial Causes of Systemic Neonatal Infections	51
5	Nonbacterial Causes of Systemic Neonatal Infections	53
6	Etiologic Agents of Neonatal Pneumonia According to Timing of Acquisition	53
7	Neonatal Infection by Age of Onset	56
8	Clinical Manifestations of Transplacental Infections Pathogen	62
9	Initial Signs and Symptoms of Infection in Newborn Infants	63
10	Manifestations of Neonatal Bacterial Infections	65
11	Serious Systemic Illness in Newborns: Differential Diagnosis of Neonatal Sepsis	66
12	Definitions of SIRS and Sepsis: Pediatric Patients	67
13	Evaluation of a Newborn for Infection or Sepsis	72
14	Suggested Dosage Schedules for Antibiotics Used in Newborns	85
15	Anthropometric data of the normal and septic neonates	97
16	Prenatal risk factors	98
17	Blood culture results in the study group	102
18	Associated clinical data	103
19	Associated complications	105
20	Statistical analysis of laboratory data of the control group	107

21	Statistical analysis of laboratory data of the study group	109
22	Comparative analysis of laboratory data between control and study	111
	groups	
23	Statistical comparative analysis of the complications of the study	115
	group	
24	Statistical comparative analysis of the clinical outcome of the study	116
	group	
25	Statistical comparative analysis of the clinical outcome and PISC	117
	parameters of the study group	
26	Antithrombin III Protein S and C in Normal and Septic Newborns	137
27	Prenatal risk factors	139
28	Associated clinical data of controls and cases	141
29	Associated complications	143
30	Hematological parameters	145
31	Laboratory data in Normal and Septic Newborns	147

LIST OF FIGURES

Figure	Title	Page			
1	Mechanism of inhibition of coagulation cascade	7			
2	The inhibitors of the blood coagulation system	8			
3	The coagulation cascade	8			
4	The haemostasis network				
5	The haemostasis network inhibitors of thrombin generation				
6	The haemostasis network: protein C Pathway				
7	The haemostasis network: fibrinolysis	16			
8	Blood vessel architecture and functions in haemostasis	18			
9	Modular organization of haemostasis proteins	19			
10	Mechanism of the coagulation disturbance seen in severe sepsis	38			
	and the actions of activated protein C				
11	Pathogenesis of hematogenous transplacental infections	45			
12	Pathways of ascending or intrapartum infection.	46			
13	Factors influencing the balance between health and disease in	47			
	neonates exposed to a potential pathogen				
14	Potential pathways from choriodecidual bacterial colonization to	57			
	preterm delivery				
15	Potential sites of bacterial infection within the uterus	58			
16	Revised perinatal group B streptococcus (GBS) prevention	74			
17	Sex distribution in cases of study group	99			
18	Sex distribution in cases of control group	99			
19	Maternal drug intake in the study group	100			
20	Maternal disease in the study group	100			

Prolonged rupture of membranes (PROM)	101
in the study group	
Blood culture results in the study group	102
Associated clinical data of the study group	104
Associated complications of the study group	106
Mean values of laboratory data of the control group	108
Mean values of laboratory data of the study group	110
Comparative analysis of Antithrombin III, Protein S and Protein	n C 112
between control and study groups	
Comparative analysis of haematological parameters and li	ver 113
function tests between control and study groups	
Comparative analysis of some sepsis screen parameters between	n 114
control and study groups	
Outcome of the study group	116
Relationship between Protein C% and clinical outcome of the	118
study group	
Relationship between Protein S% and clinical outcome of the	119
study group	117
Relationship between AT III % and clinical outcome of the stu	dy 120
group	120

LIST OF ABBREVIATIONS

A Activated factor ALT..... Alanine aminotransferase APC Activated protein C AST Aspartate aminotrasferase ATIII..... Antithrombin III DIC Disseminated intravascular coagulation Drot AA...... Drotrecogin alpha activated EPCP Endothelial cell protein C receptor F... Factor FDP...... Fibrin degradation product GBS... Group B streptococcus HB Haemoglobin HCT..... Haematocrite NEC.....Necrotizing enterocolitis PC..... Protein C P.Fulminans.....Purpura Fulminans PS..... Protein S PISC...... Physiologic inhibition system of coagulation PROM..... Prolonged rupture of membranes PT Prothrombin time PTT..... Partial activated thromboplastin time Rh-APC...... Recombinant human activated protein c TM Thrombomodulin TPF Tissue factor pathway

INTRODUCTION

The perinatal period is associated with an increased incidence of thromboembolic complications, which may occur in both the maternal and the fetal circulation in otherwise normal and healthy adults and fetuses, and this may be related to the activation of the coagulation system at the time of parturition. The risk of these complications is generally much higher in neonates, who have decreased activity of the physiologic inhibition system of coagulation (PISC), including protein C, protein S, and antithrombin III in comparison with adults, thus predisposing neonates to thromboembolic complications (*Malida et al*, 2002).

The hemostatic system of the fetus and of the neonate is dynamic. Coagulation and inhibitory factors of coagulation are progressively synthesized by the fetus beginning mainly after 34 weeks of gestation and into the first hours following delivery, guaranteeing the presence of a sufficient hemostatic balance at birth. At term, most fetal plasma factors of coagulation, including vitamin K-dependent factors, contact factors and the physiologic inhibition system of coagulation (PISC), are obviously immature and have not yet reached adult plasma concentrations (*Malida et al*, 2002).

Sepsis has emerged as one of the most crucial factors influencing the mortality and morbidity of the newborn and preterm infant in intensive care units (*Kreuz et al*, 1999).

A number of life threatening pathologic processes including sepsis, septic shock, hypoxia, acidosis, tissue necrosis and endothelial damage may trigger DIC (*Behrman and Kleigman*, 2004). In these newborns, sepsis and septic shock, as a progressive state of poor tissue perfusion, leads to severe metabolic derangements and organ failure during overwhelming infection. The underlying pathophysiology is a combination of irreversible hypotension and obstructed flow because of microthrombus formation in the capillary system (*Bone*, 1994). Whereas the former is mainly a direct response to endotoxin, microcirculatory thrombosis is the result of multiple pathway activation as a systemic response to infection, termed systemic inflammatory response syndrome (SIRS) (*Suffredini et al.*, 1990).

Because of hypoxia which has been proven to decrease the levels of protein C, protein S and antithrombin III (*El-Beshlawy et al.*, 2004), physiological cardiopulmonary overload, and other neonatal disorders, newborns and preterm infants are predisposed to disturbances of the peripheral circulation. Therefore the vascular endothelium of these patients is especially vulnerable in maintaining hemostasis, leading to early association of sepsis and DIC (*Leithauser et al.*, 1996).

There is a large body of evidence that the hemostatic system of the newborns and pretem infant is generally shifted towards hypercoagulation. During sepsis this hypercoagulability is further exacerbated by affecting the coagulation and the inhibitory factors of

coagulation including protein C, protein S and antithrombin III (Roman et al., 1992).

Sepsis is considered an acute stressor that was found to alter coagulation system equilibrium (Andrew, 1997).

AIM OF THE WORK

This study aims to clarify the effect of sepsis on the physiologic inhibition system of coagulation including protein C, protein S and antithrombin III and their effect on thromboembolic accidents of septic newborns.

REVIEW OF LITERATURE

ROLE OF PROTEIN C, PROTEIN S AND ANTITHROMBIN III IN HAEMOSTASIS IN THE PEDIATRIC AND NEONATEAL AGE GROUP

Haemostasis is one of a number of protective processes that have evolved in order to maintain a stable physiology. It has many features in common with (and to some extent interacts with) other defence mechanisms in the body, such as the immune system and the inflammatory response. These links are most clearly seen in ancient species such as the horseshoe crab (Limulus polyphemus), where a primitive 'coagulation' pathway is initiated by entry of endotoxin into the haemolymph. Vestiges of this process still exist in humans and may give rise to serious clinical consequences. For example, disseminated intravascular coagulation (DIC) can be initiated by Gram-negative septicemia. However, consequent upon the development of a highpressure blood circulatory system, extra components have evolved and have resulted in a complex, highly integrated process in all vertebrates. Indeed, recent analysis of the haemostatic network in bony fish suggests that the network in its entirety evolved over 430 million years ago, prior to the divergence of bony fish from tetrapods (Dahlback and Villoutreix, 2003).

The high blood pressure generated on the arterial side of vertebrate circulation requires a powerful, almost instantaneous but strictly localized

Review of Literature

procoagulant response in order to minimize blood loss from sites of vascular injury without compromising blood flow generally. Systemic anticoagulant and clot-dissolving components have also evolved to prevent extension of the procoagulant response beyond the vicinity of vascular injury resulting in unwanted thrombus formation in the slow, sometimes intermittent, blood flow in the veins. The resultant haemostatic system is thus a complex mosaic of activating or inhibitory feedback or feed-forward pathways, integrating its five major components (blood vessels, blood platelets, coagulation factors, coagulation inhibitors and fibrinolytic elements). Furthermore, links between haemostasis and other elements of the body's overall defence response, such as the complement and kinin-generating processes and phagocytosis, must also be considered (Dahlback and Villoutreix, 2003).

In the most simplistic terms, blood coagulation occurs when the enzyme thrombin is generated and proteolyses soluble plasma fibrinogen, forming the insoluble fibrin polymer, or clot; this provides the physical consolidation of vessel wound repair following injury. Haemostasis' refers more widely to the process whereby blood coagulation is initiated and terminated in a tightly regulated fashion, together with the removal (or fibrinolysis) of the clot as part of vascular remodelling; as such, haemostasis describes the global process by which vessel integrity and patency are maintained over the whole organism, for its lifetime (**Dahlback and Villoutreix, 2003**).

Review of Literature 7

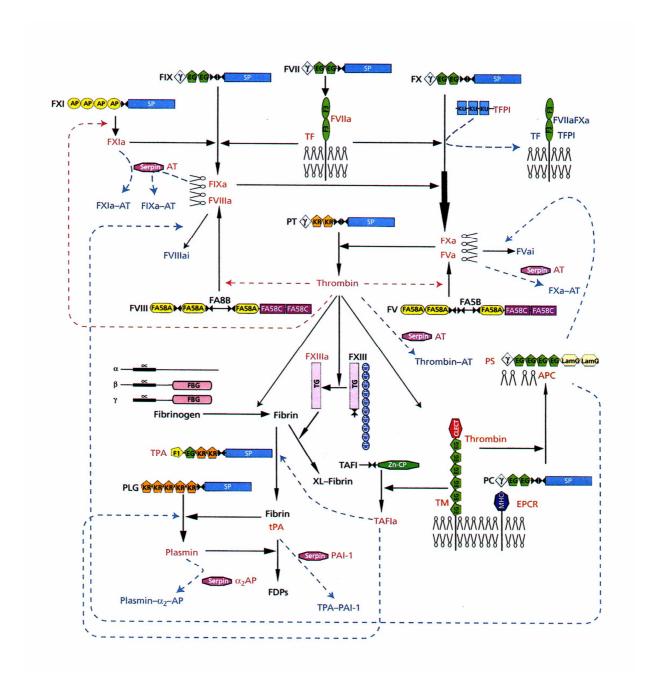


Fig (1): Mechanism of inhibition of coagulation cascade from (Kemball-Cook and Tuddenham et al.: Normal haemostasis :In Postgraduate Haematology edited by A. Victor Hoffbrand, Daniel Catovsky, Edward G.D. Tuddenham: Fifth Edition, 2006.)