

Management of Prolonged Ventilation in ICU

An Essay
Submitted for Partial Fulfillment of Master
Degree in General Intensive Care

By

Islam Fouad Sedeek Ahmed El-Saify

(M.B.B.CH.) (Tanta University, 2011)

Under supervision of

Prof. Dr. Omar Mohammed Taha Abdullah El-Safty

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University

Prof. Dr. Osama Ramzy Youssef Abdelmalek

Assistant professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Abstract

Background: Mechanical ventilation offers essential ventilatory support, while the respiratory system recovers from acute respiratory failure. Yet, invasive mechanical ventilation is associated with risks and complications that prolong the duration of mechanical ventilation and increase the risk of death.

Aim of the Work: The aim of this essay is to discuss the recent definitions, pathophysiology, new predictors and guidelines of management of prolonged mechanical ventilation.

Summary: According to the European Respiratory Society Task Force: prolonged weaning patients are those requiring more than 7 days of weaning after the first spontaneous breathing trial.

The pathophysiologic mechanisms of weaning failure need to be understood for an optimal management of the patient. These mechanisms include respiratory pump insufficiency, cardiovascular dysfunction, neuromuscular disorders, psychological factors as well as metabolic and endocrine diseases, alone or combined.

After a failed weaning test or extubation failure, a ventilation mode allowing a supposedly normal level of work of breathing is resumed. A thorough diagnostic work-up is then carried out. Subsequently, all reversible pathologies met are corrected, weaning readiness regularly ascertained and the weaning test is repeated. Tracheostomy may be considered as a useful adjunct for an easier care of the patient, especially for mobilization.

Keywords: Prolonged Mechanical Ventilation - Respiratory Intensive Care Units- Pathophysiology – Weaning failure.

Acknowledgement

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr.**Omar Mohammed Taha Abdullah El-Safty, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr.**Osama Ramzy Youssef Abdelmalek, Assistant professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine- Ain Shams University, for his continuous directions and support throughout the whole work.

Words fail to express my love, respect and appreciation to my wife for her unlimited help and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Islam Fouad Sedeek Ahmed El-Saify

Contents

List of Abbreviations	i
List of Tables	ii
List of Figsurers	iii
Introduction	1
Aim of the Essay	4
Chapter 1	
Physiology of the respiratory system	5
<u>Chapter 2</u>	
Causes and Pathophysiology of Prolonged Ventilation ICU	
<u>Chapter 3</u>	
Management of Prolonged Ventilation in ICU	70
Summary	27
References	31
Arabic summary 1	56

List of Abbreviations

AKI : Acute kidney injury

ALS : Amyotrophic lateral sclerosis

APACHE III: Age Chronic Health Evaluation III

APS : Acute Physiology Score

ARDS : Acute respiratory distress syndrome

ASV : Adaptive support ventilation

ATP : Adenosine tri-phosphate

BUN : Blood Urea Nitrogen

CAM-ICU : Cognitive assessment method in ICU

CaO₂ : Content of oxygen in arterial blood

CCO₂ : CO₂ content in blood

CIM : Critical illness myopathy

CINMAs : Critical illness neuromuscular abnormalities

CIP : Critical illness polyneuropathy

CIPNM : Critical illness polyneuropathy and myopathy

CNS : Central nervous system

COPD : Chronic obstructive pulmonary disease

C,rs : Compliance of the respiratory system

CSF : Cerebrospinal spinal fluid

DRW : Day of readiness for weaning

DVT : Deep venous thrombosis

List of Abbreviations (Cont.)

E,rs : Elastance of the respiratory system

ERV : Expiratory reserve volume

FiO2 : Fraction of inspired Oxygen

FEV1 : Forced expiratory volume in 1 second

FRC : Functional residual capacity

FVC : Forced vital capacity

F/VT : Frequency to tidal volume ratio

GABA : Gamma-amino butyric acid

GBS : Guillain–Barré syndrome

IC : Inspiratory capacity

ICU : Intensive care unit

ICU-AW : ICU acquired weakeness

IRV : Inspiratory reserve volume

IWI : Integrative weaning index

LMNs : Lower motor neurons

LTCH : Long-term care hospitals

LWH : Long-term weaning hospital

LV : Left ventricle

MG : Myasthenia gravis

MICU : Medical intensive care unit

MV : Mechanical ventilation

List of Abbreviations (Cont.)

NAVA : Neurally adjusted ventilatory support

NIPPV : Non-invasive positive pressure ventilation

NMBA_S : Neuro-muscular blocking agents

NMBD_S : Neuro-muscular blocking drugs

NTIS : Non-thyroidal illness syndrome

P0.1 : Airway occlisuion pressure 0.1 seconds after

onset of inspiratory effort

PA : Alveolar pressure

Pa : Pulmonary artery pressure

PaCO2 : Partial pressure of carbon-dioxide

PEFR : Peak expiratory flow rate

P-ACV : Pressure assist control ventilation

PBW : Predicted body weight.

PEEP : Positive end-expiratory pressure

PEEP_i : Inrinsic PEEP

PC : Pressure control

PMV : Prolonged mechanical ventilation

PSV : Pressure support ventilation

P_V : Pulmonary venous pressure

RAAS : Richmond Agitation-Sedation Scale

RCTs : Randomised controlled trials

List of Abbreviations (Cont.)

RR : Respiratory system

RSBI : Rapid-shallow breathing index.

RICU : Respiratory intensive care units

RV : Residual volume

SaO2 : Arterial oxygen saturation

SAPSII : Simplified Acue Physiology Score II

SBTs : Spontaneous breathing trials

SCI : Spinal cord impairment

SIMV : Synchronised intermittent mandatory

ventilation

 T_E : Expiratory time

 T_{I} : Inspiratory time

TLC : Total lung capacity

TV : Tidal volume

UMN : Upper motor neuron

VA/Q : Ventilation-Perfusion ratio

VC : Vital capacity

VE : Minute ventilation

VT : Tidal volume

WOB : Work of breathing

List of tables

Table	Title	Page
1	Factors that affect the standard	27
	human oxygen dissociation curve	
2	Increased respiratory workload	37
3	Causes of increased elastic load	39
4	Causes of increased resistive load	40
5	Causes of Decreased respiratory capability	43
6	Causes of metabolic encephalopathy in adults	44
7	Multivariate analysis: likelihood of PMV	71
8	Criteria of readiness for weaning trial	78
9	Indices used to predict success for	80
	weaning and ventilator discontinuation	
10	Methods for liberation from mechanical ventilation.	87
11	Defined Conditions Based on Tidal	93
	Volume, Respiratory Rate, and	
	PETCO2, and the Ventilator Response	
	During SmartCare/PS (Assumes Weight	
12	55 kg) Suggested Diagnostic Criteria for	110
12	Suggested Diagnostic Criteria for Critical Illness Polyneuropathy and	110
	Critical Illness Myopathy	
12		121
13	Confusion Assesment Method in ICU CAM-ICU	121

List of Figures

Fig.	Title	Page
1	The relationship between pressure, flow and volume during the breathing cycle	10
2	Hysteresis in a normal lung (A) and in an acutely injured lung (B). In acute respiratory distress syndrome (ARDS).	13
3	The upper line shows a normal trace. The normal ratio of FEV1 to FVC is usually >80%. The lower trace represents obstructive lung disease and demonstrates a much reduced FEV1.	18
4	Flow-Volume Loops. All graphs show flow rate plotted against volume (decreasing from left to right). Inspiratory efforts produced are shown below the horizontal line. Expiratory efforts are shown above the horizontal line	19
5	The various lung volumes and capacities. IC, inspiratory capacity; VC, vital capacity; VT, tidal volume; TLC, total lung capacity; RV, residual volume; IRV, inspiratory reserve volume; ERV, expiratory reserve volume; FRC, functional residual capacity	22
6	The Oxygen Cascade	24
7	Oxygen-hemoglobin dissociation curve	25
8	Relationship between carbon dioxide (CO2) content and CO2 pressure (PCO2) and the influences of the Haldane effect (a) and metabolic acidosis (b).	30

List of Figures (Cont.)

Fig.	Title	Page
9	Lung Zones and distribution of blood flow	34
10	Adaptive Support Ventilation adjusts both the inspiratory pressure of mandatory and/or spontaneous breaths and the mandatory breath rate to maintain the desired breathing pattern. VT = tidal volume.f = respiratory frequency. Pinsp = inspiratory pressure	91
11	Tracings obtained from ventilator while operating in the volume-controlled mode. Flow, pressure, and volume in time are presented from top to bottom	96
12	Kaplan–Meier Analysis of the Duration of Mechanical Ventilation, According to Study Group. After adjustment for baseline variables (age, sex, weight, APACHE II score, and type of respiratory failure)	100
13	Overview of a wake-up and breathe protocol	101
14	Richmond agitation sedation scale	102
15	A , patient with normal right diaphragmatic excursion showing an inspiratory peak (arrow) above the baseline. B , A patient with dysfunction of the right hemidiaphragm with a negative inspiratory peak below the baseline, indicating paradoxic movement of the diaphragm	105

List of Figures (Cont.)

Fig.	Title	Page
16	Relative risk (95% CI) of weaning success due to inspiratory muscle training, estimated by pooling data from five studies (n = 256)	108
17	Mean difference (95% CI) in duration of mechanical ventilation (in days) due to inspiratory muscle training, estimated by pooling data from seven studies (n = 305)	109
18	Schematic management of weaning failure from cardiac origin. ACE, angiotensin conversion enzyme; BNP, B-type natriuretic peptide; Hb, hemoglobin; PAOP, pulmonary artery occlusion pressure; PA, pulmonary artery; SBT, spontaneousbreathing trial; TP, transpulmonary	115
19	Four domains of risk factors for intensive care delirium. TISS 28 = The Therapeutic Intervention Scoring System-28	117
20	Awakening and Breathing Coordination, Delirium monitoring/management, and Early exercise/mobility bundle policy	121

Introduction

Mechanical ventilation offers essential ventilatory support, while the respiratory system recovers from acute respiratory failure. Yet, invasive mechanical ventilation is associated with risks and complications that prolong the duration of mechanical ventilation and increase the risk of death.

Substantial variability exists in the definition of Prolonged Mechanical Ventilation, with ventilation duration ranging from more than 6 hours to more than 29 days (*Rose et al.*, 2015).

According to the European Respiratory Society Task Force: prolonged weaning patients are those requiring more than 7 days of weaning after the first spontaneous breathing trial (*Boles et al.*, 2007).

These patients may represent up to 14% of patients admitted to ICU for intubation and mechanical ventilation, accounting for 37% of all ICU costs and are associated with an in-hospital mortality up to 32% (*Funk et al.*, 2009).

Data from meta-analysis of studies of chronically critically ill patients requiring prolonged ventilatory support revealed that, mortality at 1 year was 58%, 57% of patients were liberated from mechanical ventilation, and only 22% were discharged to home (*Damuth et al.*, 2015).

These data are of great importance as prolonged mechanical ventilation is the hallmark of chronic critical

illness, an important and growing public health problem with an estimated cost of 35 billion dollars annually in the US alone (*Khan et al.*, 2015).

The pathophysiologic mechanisms of weaning failure need to be understood for an optimal management of the patient. These mechanisms include respiratory pump insufficiency, cardiovascular dysfunction, neuromuscular disorders, psychological factors as well as metabolic and endocrine diseases, alone or combined (*Perren and Brochard*, 2013).

Early identification of those Individuals who will ultimately require prolonged mechanical ventilation would likely alter traditional ventilator and sedation management or identify those who may benefit from early tracheostomy. A novel predictive model; the I-TRACH model, was highly specific in identifying patients who subsequently required prolonged mechanical ventilatory support and was associated with greater accuracy than traditionally used models (*Clark and Lettieri*, 2013).

Also, Measuring the percentage of change in the B-Type Natriuretic Peptide level during a spontaneous breathing trial may be a good predictor of successful weaning from mechanical ventilation, and it had the best sensitivity and specificity as compared to other traditional weaning parameters (Rapid shallow breathing index, Minute ventilation, and PaO2/FiO2) (*Farghaly et al.*, *2015*)

After a failed weaning test or extubation failure, a ventilation mode allowing a supposedly normal level of work

of breathing is resumed. A thorough diagnostic work-up is then carried out. Subsequently, all reversible pathologies met are corrected, weaning readiness regularly ascertained and the weaning test is repeated. Tracheostomy may be considered as a useful adjunct for an easier care of the patient, especially for mobilization (*Perren and Brochard*, 2013).

Tracheostomy was independently associated with reduced ICU and in-hospital mortality, and increased successful weaning rate, for critically ill patients requiring MV for at least 14 days (*Lin et al.*, 2015).

In several countries specialized units have been created to accommodate patients requiring just prolonged mechanical ventilatory support and being otherwise clinically stable (*Perren and Brochard. 2013*)