Ultrasonographic Findings In Posterior segment Of Traumatized Eyes

Thesis
Submitted For Partial Fulfillment Of Master Degree In
Ophthalmology
By

Khalid Al Husseiny Mohamed Al Husseiny

M.B.B.ch(Cairo University)

Under Supervision Of

Prof. Dr. Abdel Aziz Ali Saad

Professor of Ophthalmology Faculty of Medicine (Cairo University)

Prof. Dr. Randa Mahmoud Abdel Razek

Professor of Ophthalmology Faculty of Medicine (Cairo University)

Ass.Prof.Dr. Walid Hazem Attia

Assistant Professor of Ophthalmology Faculty of Medicine (Cairo University)

Faculty of Medicine (Cairo University)

Acknowledgment

Thanks to "AllAH" for all gifts, he blessed me.

I am deeply grateful to Professor Dr. Abdel AZIZ Ali Saad for his generous and caring attitude, Her great scientific help taking much of her valuable time.

I would like to express my deep appreciation to Professor Dr. Randa Mahmoud Abdel Razik, for her support, her keen meticulous supervision and her great scientific help taking much of her valuable time and effort.

I would like to express my deep appreciation to Dr. Walid Hazem Attia for his generous support, his great encouragement and his valuable time.

I would like to express my deepest gratitude to Professor Dr. Laila Osman for her great support and encouragement.

I am indebted to my dear professors, staff members and colleagues in the ophthalmology department for all the help I met whenever I needed.

I would like to thank my dear family for their love and support.

التغيرات للجزء الخلفى للعين بالموجات فوق الصوتية في اصابات العين

رسالة مقدمة توطئة للحصول على درجة الماجستير في طب و جراحة العيون

مقدمة من الطبيب خالد الحسينى محمد الحسينى بكالوريوس الطب و الجراحة

تحت اشراف

الأستاذ الدكتور/ عبدالعزيز على سعد أستاذ طب و جراحة العيون كلية الطب علية الطب جامعة القاهرة

الأستاذ الدكتور/ رنده محمود عبد الرازق أستاذ طب و جراحة العيون كلية الطب كلية الطب جامعة القاهرة

الأستاذ مساعد الدكتور/ وليد حازم عطية أستاذ مساعد طب و جراحة العيون كلية الطب علية الطب جامعة القاهرة

كلية الطب جامعة القاهرة ٢٠٠٧

I. IntroductionandAim of Work

II. Review of Literature

III. Patients and Methods

V. DISCUSSION

VI. Summary

References

List of Abbreviations

AC: Anterior Chamber

BB : BomB pellets

BETTS: Birmingham Eye Trauma Terminology System

CD: Choroidal Detachment

CNV: Choroidal neovascular membrane

COS: Canadian Ophthalmological Society

CT: Computed Tomography

HEIR: Hungarian Eye Injury Registry

HMGP: Hand Movement Good Projection

MHz: Mega Hertz

IOFB: IntraOcular Foreign Body

IOP: Intra ocular Pressure

MRI : Magnetic Resonance Imaging

MVCs: Motor vehicle accidents

NPL: No Perception of Light

OCT: Ocular Coherence Tomography

PHM: Posterior hyaloid membrane

PVD: Posterior Vitreous Detachment

PVR: Proliferative Vitreoretinopathy

RD: Retinal Detachment

SCH: Suprachoroidal hemorrhage

TON: Traumatic Optic Neuropathy

UBM: Ultrasound BioMicroscopy

US: Ultrasonography

USEIR: United States Eye Injury Registry

Vit. hge: Vitreous hemorrhage

List of Tables

- **Tab(1):** Birmingham Eye Trauma Terminology System
- **Tab**(♥): Open Globe Injury Classification
- **Tab**(♥): Closed Globe Injury Classification
- Tab(*): Potential Posterior Segment Findings following Severe Ocular Injury
- **Tab(°):** Posterior Segment Involvement in Eyes with Lens Injury
- **Tab(\(\)):** Causes of Vitreous Hemorrhage
- **Tab**($^{\vee}$): Advantages of Early vs Delayed Vitrectomy in Open Globe Injury
- **Tab(^):** Differentiation of (PVD), (RD), and (CD)
- **Tab(4):** Selected Primary and Secondary Consequences of IOFB Injury
- Tab().): Group (I): Closed Globe Injuries Group
- Tab(\): Rupture group
- **Tab(¹ ₹):** Laceration group
- **Tab(¹ ७):** Penetrating trauma with IOFB
- **Tab(\ ¹ :):** Perforating injury
- Tab(\ o): No. of cases in relation to their residence
- **Tab()¹):** No. of cases in relation to type of injury
- **Tab(\ \ \ \):** No. of cases in relation to place of injury
- **Tab(\^):** No. of cases in relation to lens status

List of Figures

- Fig(\): BETTS
- Fig (Υ) : Zones for open globe injury.
- Fig ($^{\gamma}$): Zones for closed globe injury
- Fig (ξ): Spectra of transducers with γ -, γ -, and γ -megahertz
- Fig (°): Magnified section of Y-megahertz image aligned with a histologic section of a human eye.
- Fig (\(\frac{1}{2}\)): Vitreous hemorrhage scanned with \(\frac{1}{2}\). MHz probe and \(\frac{1}{2}\).
- Fig $(^{\vee})$: Globe wall scanned with $^{\vee}$ · MHz probe and $^{\vee}$ · MHz probe
- Fig (^): Optic nerve scanned with ' · MHz probe and ' · MHz probe
- Fig (9): Posterior lens capsule using Y. MHz probe
- Fig(\'\'): Three-dimensional perspective image an eye with choroidal hemorrhage and associated retinal detachment
- Fig(''): Four views of a three-dimensional perspective image of a traumatized eye with hypotony
- Fig(\)\): Different lens trauma
- Fig(\rangle\gamma): Subluxated and dislocated lenses
- Fig(\forall \xi): B-scans from different eyes showing PVD with varied attachments to the retina.
- Fig(\o): Subhyaloid hemorrhage
- Fig(\): Peripheral retinal dialysis
- Fig(\\): Retinal detachment

Fig(\)\,\,\): Fundoscopic views of optic nerve avulsion

Fig($^{\gamma}$): B-scan ultrasonography of optic nerve avulsion

Fig('): Suprachoroidal hemorrhage

 $Fig(\Upsilon\Upsilon)$: Bullous choroidal detachment

Fig(\(^\gamma\)): B-scan ultrasonography of Posterior scleral defect

Fig(\(^\xi\)): B-scan ultrasonography of Posterior scleral defect

Fig(Yo): B-scan ultrasound of a large metallic IOFB

Fig(⁷⁷): A-scan & B-scan ultrasound of metallic intraocular foreign body.

Fig (YV): A-scan & B-scan ultrasound of Intraocular BB

Fig(¬¬): UBM image showing highly reflective intraocular foreign body in inferior angle

Fig(⁷ ⁹): UBM image showing subconjunctival foreign body

 $Fig(^{r}\cdot)$: Reverberation artifacts from a silicone intraocular lens

Fig((): Ring-down, or comet-tail, artifact from an air bubble.

 $Fig(^{r})$: Shadowing by a bubble of intraocular air

 $Fig(\Upsilon\Upsilon)$: Scleral fold

 $Fig(^{r\xi})$: IOFB in sclera US scan ,CT scan

 $Fig(\mathfrak{To})$: Case No. (1)

Fig(77): Case No. (7)

 $Fig(\Upsilon V)$: Case No. (Υ)

Fig($^{\gamma}$ $^{\lambda}$): Case No. ($^{\xi}$)

Fig($^{\mathfrak{P}}$): Case No. ($^{\circ}$)

 $Fig(\xi \cdot)$: Case No. (7)

 $Fig(\S)$: Case No. (\lor)

Fig($\xi \gamma$): Case No. (Λ)

- Fig($\xi \gamma$): Case No. (9)
- $Fig(\xi\xi)$: Case No. ($\uparrow \cdot$)
- $Fig(\xi \circ)$: Case No. (\)\)
- $Fig(\xi)$: Case No. (17)
- $Fig(\xi V)$: Case No. (Y)
- $Fig(\xi \wedge)$: Case No. ($^{1}\xi$)
- $Fig(\xi \circ)$: Case No. (\circ)
- Fig(° ·): Case No. (\7)
- Fig(°): Case No. (\)
- Fig(°Y): Case No. (\\\)
- $Fig(\mathfrak{O}^r)$: Case No. (19)
- Fig(o \(\xi \)): Case No. (\(\xi \))
- Fig(°°): Case No. (۲)
- Fig(°): Case No. (۲۲)
- Fig(\circ \forall): Case No. (Υ Υ)
- Fig($\circ \wedge$): Case No. ($^{\xi}$)
- Fig(oq): Case No. (Yo)
- Fig $(7 \cdot)$: No. of cases according to their age
- Fig (7): No. of cases according to gender
- Fig $(\fine 1)$: Cases in relation to type of injury
- Fig (٦٣): Cases in relation to lens status
- Fig (75): Cases according to time between trauma and ultrasonography