Phenotypic and Genotypic Detection of Carbapenemase Producing Pseudomonas aeruginosa Recovered from Clinical Specimens

Thesis

Submitted for Partial Fulfillment of the Master Degree in Clinical Pathology

Presented by Omyma Hassan Abu Bakr Shaaban

MB Bch, Alexandria University

Supervised by Doctor/ Hala Badr El-Din Ali Othman

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain shams University

Doctor/ Rania Mohamed Abd El Halim

Lecturer of Clinical Pathology Faculty of Medicine - Ain shams University

> Faculty of Medicine Ain Shams University 2016

First of all, thanks to **ALLAH** who granted me the strength to accomplish this work and for his enormous generosity, blessings and gifts in my life.

I would like to express my deepest thanks to *Dr. Hala Badr El-Din Ali Othman*, Assistant Professor of Clinical Pathology, Faculty of Medicine Ain Shams University, for giving me the chance of working under her supervision. I appreciate her valuable scientific advice, kind encouragement and her help to accomplish this work.

I would like to extend my thanks to *Dr. Rania Mohamed Abd El Halim*, Lecturer of Clinical Pathology Faculty of Medicine Ain Shams University, for her kind meticulous supervision, outstanding support, great effort and sincere advice.

Words can never express my deepest gratitude, appreciation and sincere thanks to my dear parents for supporting me in every step I take, providing me with all the care, support and love I can ever dream of. I would like to express my warmest thanks to my second mom, Raghda, for her great help and support.

Finally, my thanks to my daughter Rokaya, for her continued love and support all through, who made the completion of this thesis possible.

Omyma Hassan Abu Bakr

Contents

List of Abbreviations	i
List of Tables	V
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Carbapenemases Laboratory Detection of Carbapenemase Producing	5
Pseudomonas aeruginosa	13
Treatment of Carbapenemase Producing Pseudomonas	
aeruginosa	48
Infection Control Strategies	59
Materials and Methods	66
Master Sheet	84
Results	87
Discussion	98
Summary	110
Conclusion and Recommendations	113
References	115
A rabic summary	

Abb.	Meaning		
2-MPA	.2- mercaptopropionic acid		
A. baumannii	Acinetobacter baumannii		
ABS	Antimicrobial Stewardship		
ACHN-490	Plazomicin		
	.N-acylated homoserine lactone regulatory		
	system		
AIM	. Adelaide imipenmase		
AmpC	.Ambler Class C		
APB	.3-aminophenylboronic acid		
BAL 30072	Siderophore monosulfactam		
BCII	.Metallo-β-lactamase from <i>Bacillus cereus</i>		
bla	.Beta –lactamase gene		
BlaB or GOB-1	.Metallo-β-lactamase from <i>Chryseobacterium</i>		
	meningosepticum		
C. freundii	.Citrobacter freundii		
Ca2+	Calcium		
CDT	Combined disc test		
CFU	Colony forming unit		
CHDL	.Carbapenem-hydrolyzing class D β-lactamases		
CLSI	Clinical Laboratory Standard Institute		
CP	Contact precautions		
CPE	. Carbapenemase-producing <i>Enterobacteriacae</i> .		
CPGN	.Carbapenemase-producing Gram-negative		
	bacilli		
	.Metallo-β-lactamase from <i>Aeromonas</i>		
	hydrophilia		
	.Carbapenem-resistant Enterobacteriaceae		
	.Carbapenem resistant <i>P. aeruginosa</i>		
CTX-Ms	Cefotaximase		
DDST	Double disc synergy test		
DIM			
DNA	Deoxy ribonucleic acid		
DOR			
DPA	<u>-</u>		
E. cloacae	.Enterobacter cloacae		

Abb.	Meaning	
E. coli	.Escherichia coli	
EC	.Environmental cleaning	
EDTA	.Ethylene diamine tetra-acetic acid	
	.Extended spectrum β-lactamases	
E-test	. Epsilometer test	
ETP	. Ertapenem	
FEZ-1	. Metallo-β-lactamase from <i>Legionella</i>	
	gormannii	
FIM	. Florence imipenemase	
GES	. Guiana extended spectrum	
GIM	. German imipenemase.	
GNB	.Gram-negative bacilli	
HCWs		
НН	. Hand hygiene	
ICU`		
IEF	. Isoelectric focusing	
IMP	. Imipenem-hydrolyzing β-lactamases	
IND-1	. Metallo-β-lactamase from <i>Chryseobacterium</i>	
	indologenes	
IPM	. Imipenem	
JOHN-1	. Metallo-β-lactamase from <i>Flavobacterium</i>	
	johnsoniae	
-	.Klebsiella pneumoniae	
_ <u> </u>	Klebsiella, Enterobacter, Serratia, Citrobacter	
	Klebsiella pneumoniae carbapenemases	
	Metallo-β-lactamase from <i>S. maltophilia</i>	
MALDI-TOF	. Matrix-assisted laser desorption ionization-time	
	of flight	
MBL		
Mbl1B	. Metallo- β -lactamase from <i>Caulobacter</i>	
	crescentus	
MDR		
	. Multidrug resistant Pseudomonas aeruginosa	
ME1071, CP3242	.Maleic acid derivative	

Abb.	Meaning
MEM	. Meropenem
Mex	. Multidrug efflux
Mg2+	
MHA	
MHT	. Modified Hodge test
	. Minimal inhibitory concentration
MK-7655	.Novel β-lactamase inhibitor
MS	
NAB 7061	
NAB 739	
	.New Delhi metallo-β lactamase
NMC	. Non metalloenzyme carbapenemases
NXL104	. Avibactam
	.Outer membrane porin
OXA	.Oxacillinase
_	.Pseudomonas aeruginosa
	. Pseudomonas aeruginosa- modified Hodge test
	. Polymerase Chain Reaction
	.Pulsed field gel electrophoresis
_	. Quorum-sensing system
_	. Quorum-sensing inhibitors
	.Rapid CARB screen test
	. Metallo-β-lactamase from <i>S. fonticola</i>
SHV	• •
SIM	<u>♣</u>
	.Sodium mercaptoacetic acid
	.Restriction enzyme for PFGE
	.Sao Paulo metallo-β-lactamase
β-GAL	
β-GUR	
	. Tryptophan deaminase reaction
	. Metallo-β-lactamase from <i>Janthinobacterium</i>
	lividium
TUS-1, MUS-1	. Metallo- β -lactamase from <i>Myroides spp</i> .

Abb.	Meaning
VIM	Verona integron-encoded metallo-β-lactamases
XbaI	Restriction enzyme for PFGE
ZI	inhibition zone
Zn2+	Zinc
ZnSO4,	Zinc sulphate
β-Lactamase	beta-lactamase

List of Tables

Table No	. Title	Page No.
Table (1):	Classification schemes for β-lactamases	6
Table (2):	Substrate and inhibition profiles of carbapenemases	
Table (3):	Interpretation of combination disk method	35
Table (4):	Antagonist of QS against selected bacteria pathogens.	
Table (5):	Zone diameter Interpretative standards for aeruginosa	
Table (6):	Primers sequences used in this study	75
Table (7):	Components of reaction mixture for each 2 reaction for bla_{KPC} genes (bla_{KPC-1}) through bla_{KPC-7})	ough
Table (8):	Components of reaction mixture for each 2 reaction for <i>bla_{IMP}</i> , <i>bla_{VIM}</i> and <i>bla_{OXA-48}</i>	
Table (9):	Patient demographic data of 100 CRPA isola	ates88
Table (10):	Antimicrobial susceptibility pattern of CRPA by disc diffusion susceptibility testing	
Table (11):	Results of PCR detection of the carbapenemase encoding genes on 100 CI isolates	
Table (12):	Results of PCR genes for detection carbapenemase encoding genes according to of genes detected in each isolates Error! Boo	no.
Table (13):	Results of MHT compared to PCR	95
Table (14):	Results of PAE-MHT compared to PCR	96
Table (15):	Diagnostic performance of different phenot methods	ypic 96

List of Figures

Fig. No	Title	Page No.
Figure (1):	The modified Hodge test (MHT)	20
Figure (2):	Results of the modified Hodge test for representative VIM-producing <i>P. aerugino</i> isolate with different indicator strains	osa
Figure (3):	Performances of DDSTs using disks of IPM CAZ and disks of EDTA (1,900 µg) or 2-MPA	
Figure (4):	Performances of DDSTs with different lactams and chelating agents	
Figure (5):	MBL IPM/IPM-EDTA E-test for P.aeurogina	osa 31
Figure (6):	Protocol for carbapenemase screening among <i>aeruginosa</i> isolates	
Figure (7):	Combination disk method: Representative results of the four combined disk tests used disks of meropenem (MEM) alone and we EDTA, 3 -aminophenylboronic acid, or ED plus 3-aminophenylboronic acid	ing rith ΓΑ
Figure (8):	The Rapid Carb screen test with the use different tubes and increasing inocula	
Figure (9):	Examples of results for non-carbapenema producing and carbapenemase-produce <i>Pseudomonas</i> spp. from the Carba NP test	ing
Figure (10):	Carba NP test II interpretation scheme	
Figure (11):	Blue- Carba test	40
Figure (12):	P. aeruginosa on ChromID Carba	70
Figure (13):	(A) MHT; isolates 1, 2, 4 show positive resistance 3 shows negative result. (B) PAE-MH isolates 1, 2, 3, 4 show positive result	HT;
Figure (14):	(A) MHT; isolates 1, 2 show indeterrmin result. isolate 3 shows negative result a isolate 4 shows positive result. (B) PAE-MF isolates 1, 2 show indeterrminate result. isol 3 shows negative result and isolate 4 sho positive result.	and IT; ate ws

List of Figures (cont.)

Fig. No.	Title	Page No.
Figure (15):	Gel electrophoresis of PCR products	80
Figure (16):	Gel electrophoresis of multiolex PCR pro-	ducts 81
Figure (17):	Gel electrophoresis of KPC PCR products	82
Figure (18):	The antimicrobial susceptibility pattern	of 100
	CRPA by disc diffusion susceptibility test	ing 90
Figure (19):	The results of MHT, PAE-MHT and Ch	romID
	Carba on 100 CRPA isolates	92
Figure (20):	The results of PCR for detection o	f four
	carbapenemases encoding genes on 100	CRPA
	isolates	93

Introduction

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing severe invasive disease in critically ill and immunocompromised patients. Because of nature, ability to survive its ubiquitous in moist environments, and innate resistance to many antibiotics and antiseptics, it constitutes a common pathogen in hospitals (Cornaglia et al., 2000). Its treatment is a therapeutic challenge because of its intrinsic resistance to narrow spectrum β -lactams due to the constitutive expression of β lactamases, efflux pumps and the low permeability of the outer membrane (Mesaros et al., 2007), in addition to the acquired production of the extended-spectrum β-lactamases (ESBLs) of the PER, VEB, and GES types (Nordmann and Naas, 2010). Consequently, the carbapenem-containing treatments were nearly the remaining option for its infections.

Carbapenem resistance in *P. aeruginosa* has been increased. It can result from different mechanisms, such as decreased bacterial outer membrane permeability, overexpression of AmpCs or expression of true carbapenemases (*Dortet et al., 2014*).

Carbapenemases production in *P. aeruginosa* belong to the Ambler class A (KPC- and GES-type β -lactamases) and most commonly the Ambler class B (metallo- β -lactamases) (MBLs) of the VIM, IMP, SPM, GIM, AIM, DIM, FIM, and NDM types (*Dortet et al.*, *2014*), also class D, the oxacillinases (e.g. OXA -48, -58) have been identified in *P. aeurogenosa* (*Mataseje et al.*, *2012*).

Introduction

Screening of carbapenemase production among carbapenem resistant *P. aeruginosa* isolates is important since many carbapenemase genes are plasmid carried and easily transferable. So, Detection of those strains is of major importance for the determination of appropriate therapeutic schemes and the implementation of infection control measures (*Pasteran et al.*, 2011a).

Several inhibitor-based tests have been developed for the detection of carbapenemases in *P. aeruginosa*. However, misdetection of newly emerging isolates with a combination of carbapenemases could occur with these methods (*Pasteran et al.*, 2011a).

The modified Hodge test (MHT) has been widely used for carbapenemase screening by routine laboratories. Because of its simplicity, the Clinical and Laboratory Standards Institute (CLSI, 2011) has recommended its use in Enterobacteriaceae with elevated carbapenem MICs or reduced disk diffusion inhibition zones for detection of carbapenemases production. However, this recommendation does not include P. aeruginosa. Only two reports addressed the usefulness of the MHT using P. aeruginosa isolates of as the gold standard. Using known genotype methodological standardization for Enterobacteriaceae, it was reported that the background lawn formation by E. coli ATCC 25922 was inhibited by a large proportion of the tested strains, defined as an equivocal or indeterminate result (Pasteran et al., 2011a). It is clear then, that the traditional MHT needs to be refined for use in P. aeruginosa, with the optimum test conditions defined to ensure a higher performance.

So the MHT was optimized for a more accurate and reliable detection of carbapenemase production in *P*.

Introduction

aeruginosa by using a novel indicator strain, *K. pneumoniae* ATCC 700603, and this test was named the *P. aeruginosa* MHT (PAE-MHT) (*Pasteran et al.*, 2011a).

Chromogenic media containing a carbapenem (chromID Carba, chromID KPC, chromID ESBL) are convenient tools for the screening and rapid detection of carbapenemase producing Gram-negative bacilli (CPGNB). Among the different chromogenic media designed to detect CPGNB, chromID Carba demonstrated the highest sensitivity and specificity (Simner et al., 2015).

Different genotpic methods have been applied for detection of carbapemenases encoding genes in clinical isolates of *P. aeuroginosa* (Simner et al., 2015).

Aim of the Work

The aim of the work is to:

- 1. Evaluate the ability of phenotypic methods (ChromID Carba agar chromogenic medium, Modified Hodge test (MHT) and *P. aeruginosa* -Modified Hodge test (PAE-MHT)) for detection of carbapenemase producing strains of *P. aeruginosa*.
- 2. Determine some carbapenamase gene classes associated with different *P. aeruginosa* carbapenam resistant isolates using conventional PCR (*bla_{KPC}*) and conventional multiplex PCR (*bla_{VIM}*, *bla_{IMP}*, *bla_{OXA-48}*).

Carbapenemases

Excessive use of carbapenems (because of ESBLs spread) has led to the emergence of carbapenemases (*Bălăşoiu et al.*, 2014).

Spread of carbapenemase-producing *P. aeruginosa* strains is a critical issue since those strains are resistant to almost all β-lactams. In addition, the early detection of carbapenemases is important because carbapenemase genes are usually located on transferable genetic determinants such as plasmids, leading to their rapid dissemination (*Dortet et al., 2014*). So, Detection of those strains is of major importance for the determination of appropriate therapeutic schemes and the implementation of infection control measures (*Pasteran et al., 2011b*).

Carbapenemases can be classified on the basis of function or structure. The most commonly used classification is Ambler which based on molecular structure. In this classification, carbapenemases belong to classes A, B, or D. Class A and D are serine carbapenemases, meaning that they have a serine at their active sites, like ESBLs. In contrast, the class B enzymes are known as metallo-β-lactamases, because they require zinc as a cofactor. Ambler classified betalactamases according to the amino acid sequences. While functional according **Bush-Jacoby** to classification carbapenemases fall under groups 2f, 2df and 3, this classification depend on biochemical analysis of enzyme, determination of isoelectric point, determination of substrate hydrolysis, enzyme kinetics and inhibition profiles (Sridhar, 2012) (Table 1) (Bassetti et al., 2011).