Autologous Fat Grafting in Postmastectomy Breast Reconstruction: Core Reconstruction and Ancillary Procedure

Essay

Submitted for Partial Fulfillment of the Master Degree in General Surgery

By

Mahmoud Yassein Saad

M.B.B.CH. Mansoura University

Under supervision of

Prof. Dr. Ashraf El Zoghby El Saeed

Professor of General Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Salah Nasser Mohammed

Professor of Plastic Surgery Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ashraf El Zoghby El Saeed,**Professor of General Surgery Faculty of Medicine Ain Shams

University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Salah Nasser Mohammed**, Professor of Plastic Surgery Faculty of Medicine Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Mahmoud Yassein Saad

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	11
Introduction	1
Aim of the Study	5
Review of Literature	
Surgical Anatomy of the Female Breast	6
Aesthetics of the Female Breast	23
Recent Trends in Breast Cancer Surgery	37
Principles of Fat Grafting	50
Breast Core Reconstruction by Fat Graft	_
Post-Mastectomy Breast Reconstruction by Grafting as an Ancillary Procedure	
Summary and Conclusion	151
References	153
Arabic Summary	

List of Tables

Table No	. Title P	ige No.	
Table (1):	Digestion enzyme and fluid volumes	118	
Table (2):	Volumes for use of SVF-1 device (the nu of total nucleated cells has been estinusing the mean cell yield values obtausing GID procedure of 500,000 cells/ml adipose)	nated ained L dry	

List of Figures

Fig. No.	Title Page N	10.
Fig. (1):	The milk lines	
Fig. (2):	Stages in breast development	7
Fig. (3):	(A) Structure of the breast. (B) Changes in the	
	breast during lactation. (C) Section of the	
	nipple. (D) Cross-section of the nipple (L) open	
	onto the surface; sebaceous glands (S) are	
	deep to the epidermis	
Fig. (4):	Cooper's ligament	
Fig. (5):	Blood supply to the breast	13
Fig. (6):	Blood supply to the breast – cross-sectional	
	view	15
Fig. (7):	Lymph vessels of the breast and the axillary	
	lymph nodes	
Fig. (8):	Muscles of the chest wall	
Fig. (9):	Position of breast	
Fig. (10):	Representative three-quarter profile view	30
Fig. (11):	The inframammary ligament originates from	
	the 5th rib and inserts into the deep dermis of	
	the skin	
Fig. (12):	Ideal breast measurements	
Fig. (13):	Partition of the right breast into quadrants	
Fig. (14):	Planning the lumpectomy incision	
Fig. (15):	Parallelogram mastopexy lumpectomy	
Fig. (16):	Mastopexy closure	
Fig. (17):	The batwing mastopexy lumpectomy	
Fig. (18):	Donut mastopexy lumpectomy	
Fig. (19):	Reduction mastopexy lumpectomy	
Fig. (20):	Central lumpectomy	48
Fig. (21):	The general lipocyte distribution from the	
	dermis to the muscular fascia	
Fig. (22):	Showing preferable sites for fat harvesting	58

Fig. No.	Title Page N	10.
Fig. (23):	Sites of incisions placement marked by red cirles	59
Fig. (24):	Insertion of harvesting canula	
Fig. (25):	Canula tip and lumen of the Luer-Lok syringe	
Fig. (26):	The inserted cannula is attached to a 10 cc	
	Luer-Lok syringe	66
Fig. (27):	Minimizing friction burns by using oil fatty tissue	67
Fig. (28):	Multi-holed canula	68
Fig. (29):	Complete closed-syringe microcannula system	70
Fig. (30):	15 and 25 cm cannulas	71
Fig. (31):	Separated 3 zones of lipoaspirate	73
Fig. (32):	Cannula is removed from the syringe and	
	replaced with a plug	74
Fig. (33):	The plug is twisted on to create a seal	75
Fig. (34):	The plugs that accompany the syringe should	
	be avoided	75
Fig. (35):	The plunger is removed from the proximal end	
	of the syringe	76
Fig. (36):	The syringe without the plunger is placed into	
	a centrifuge	77
Fig. (37):	Placement of syringes is balanced on the	
	opposite side	78
Fig. (38):	Lid closure and timmer setting	79
Fig. (39):	The centrifuged syringes are removed carefully	79
Fig. (40):	Drainage of the aqueous component	81
Fig. (41):	Wicking the most superior portion of the	
	harvested fat	82
Fig. (42):	Fat will often stick to the neuropad when	
	removed	83
Fig. (43):	The plunger is replaced after allowing the fatty	
	tissue to slide down to the edge of the syringe	83
Fig. (44):	Care should be taken to keep both syringes in	
	a relatively vertical orientation	84

Fig. No.	Title Page N	10.
Fig. (45):	The index finger on the Luer- Lok aperture controls the slippage of the fat back to the proximal end of the syringe	95
Fig. (46): Fig. (47):	The varying densities of processed lipoaspirates A blunt 17-gauge cannula with the proximal end has a hub that will fit into a Luer-Lok	86
Fig. (48):	syringe Instruments for structural fat grafting must be efficient and cause minimal trauma to the grafted tissue during placement	
Fig. (49):	~ -	
Fig. (50):	· -	05
1 18. (00).	path creating a space	90
Fig. (51):		91
Fig. (52):	= * -	
• •	advancement of the cannula	92
Fig. (53):		
3 \ /	slightly while the cannula is being withdrawn	92
Fig. (54):		
• •	separated by the tissues of the recipient site to	
	maximize the surface area of contact between	
	the donor and recipient tissues	93
Fig. (55):	-	
	refined fat	94
Fig. (56):	Surface irregularities	95
Fig. (57):	Vascularization of the fatty tissues	96
Fig. (58):	· · · · · · · · · · · · · · · · · · ·	
Fig. (59):		
-	delayed left breast fat grafting after BCT	105
Fig. (60):		
_	delayed fat grafting after BCT	105

Fig. (61): The Brava system	12 15 16 17 19 20
Fig. (62): Aspirating processed fat graft from the PureGraft	12 15 16 17 19 20
PureGraft	15 16 17 19 20
Fig. (63): Fat harvesting: (blue) Vacuum. (Red)	15 16 17 19 20
	16 17 19 20
	16 17 19 20
Fig. (64): Three washes in the GID canister	17 19 20
Fig. (65): Digital scale balance 11	19 20
Fig. (66): GIDzyme-2 GMP GRADE collagenase enzyme11	20
Fig. (67): Fat after digestion: supply/creamy appearance12	
Fig. (68): Shaking incubator in action for 40 min	
Fig. (69): Sixty milliliter syringe with Human Albumin	
solution to be used to stop buffer12	21
Fig. (70): GID SVF-1 plus centrifuge balance canister	
inserted in the centrifuge12	22
Fig. (71): GID canister after centrifugation	23
Fig. (72): Cell pellet after centrifugation	23
Fig. (73): Cell pellet after fluid removal	23
Fig. (74): Total cell pellet SVF volume has to be divided	
and added to each 60 ml syringe of fat12	24
Fig. (75): Micrometer filter and Eppendorf saline sterile	
Essay tube for cell counter12	25
Fig. (76): Particular of the curved tip of the Tuohy	
needle	29
Fig. (77): Fat graftings are placed immediately above	
the major pectoralis fascia up to the	
subcutaneous space just below the dermis with	20
closed-sky procedure 15	30
Fig. (78): Intramuscular breast lipoinjection in opensky	1
procedure	ΣŢ
Fig. (79): A 4-cm incision is performed only in the epidermis and in two-thirds of the dermis and	
the incision continued for 3 mm at both ends13	33

Fig. No.	Title	Page N	lo.
E' (00)	Decree of the helds of the	- C O	
Fig. (80):	Permanent nonabsorbable suture		
	thickness with a large needle is passed	•	
	enters through one of these orifices ar		
	through the other, covering as much ti		
	possible; on tying it firmly, to pucker th		
	and thus give the desired cone shape	to the	
	lower quadrants		.134
Fig. (81):	The knot is hidden in one of the edges	of this	
	incision		.135
Fig. (82):	incision Fat injection into a skin	sparing	
9	mastectomised breast		.136
Fig. (83):			
_ -g (00)(complex will be placed, an isosceles tria		
	drawn facing downwards towards the	•	
	the future inframammary fold, wide		
	when the two sides are joined to cre	_	
	· ·		197
E' - (04)	desired cone shape with an inverted "T"		.137
Fig. (84):	•		400
	level of the sixth rib are then performed	1	138

List of Abbreviations

Abb.	Full term
ADSCs	Adipocyte derived stem cells
	Autologous Fat Graft
	Breast-conserving surgery
	Breast conserving therapy
	Dutal carcinoma in situ
DIEP	Deep inferior epigastric perforator
	Fasciocutaneous infragluteal
	The Gid Group, Stromal Vascular Fraction
	Inferior gluteal artery perforator
	International Society for Cellular Therapy
	Local anaesthetic
<i>LDF</i>	Latissimus dorsi flap
<i>LPC</i>	Lower pole convexity
<i>LPL</i>	Lower pole line
<i>LR</i>	Lactated Ringer's solution
<i>M</i> – <i>Ni</i>	Manubrium notch to the center of the nipple
MSCs	Mesenchymal stem cells
<i>NAC</i>	Nipple areola complex
<i>NM</i>	Nipple meridian
<i>N–Ni</i>	$\dots d$
<i>NSABP</i>	National Surgical Adjuvant Breast and Bowel
	Project
<i>PAP</i>	Profunda femoral artery perforator
<i>PMRT</i>	Post-mastectomy radiotherapy
<i>RT</i>	Radiotherapy
<i>SGAP</i>	Superior gluteal artery perforator
	Skin Sparing Mastectomy
	Transverse myocutaneous gracilis
<i>TRAM</i>	Transverse rectus abdominis myocutaneous flap
U	
	Upper pole line
UPS	Upper pole slope

Abstract

On the contrary there is much evidence in literature concerning the positive effect of lipofilling after I stage and II stage breast reconstruction.

Many studies have documented the protective and therapeutic effect of the injected fat against the dangerous consequence of radiotherapy on tissues. Indeed, if performed during RT, lipotransfer is able to reduce the risk of capsular contracture, tissues ulceration and consequently of implant exposure as it provides a major thickness of the tissue above the implant. This is basically due to adipocytes and preadipocyte's role in tissue trophism and healing process.

More commonly lipofilling is used to uniform and fill some irregularities and/or scars of the reconstructed breast after the insertion of the definitive prosthesis to ameliorate the definitive shape of the reconstructed breast or to fill the nipple.

Keywords: International Society for Cellular Therapy- Latissimus dorsi flap - Lactated Ringer's solution - Mesenchymal stem cells- Nipple areola complex - Nipple meridian

INTRODUCTION

reast reconstruction is a fascinating and complex field D which combines reconstructive and aesthetic principles to provide the best results. The goal of breast reconstruction is to restore the breast shape and to improve a woman's psychological status after cancer treatment. Successful breast reconstruction requires understanding of the different reconstructive techniques and a thorough knowledge of breast aesthetics (Del Vecchio and Fichadia, 2012).

The history of breast reconstruction has followed the history of breast cancer surgery. As the various techniques for cancer excision evolved over the past century, reconstructive techniques had to likewise evolve (Del Vecchio and Fichadia, 2012).

Halsted introduced the radical mastectomy and at the same time discouraged initial attempts at breast reconstruction because he believed it could hide local recurrence. **Ombredanne** is credited with using the pectoralis minor muscle flap to create a breast mound, whereas Tansini is the first to use the latissimus dorsi myocutaneous flap for breast reconstruction (Losken and Jurkiewicz, 2002).

The use of prosthetic materials like polyvinyl sponges in era, pre-antibiotic had many complications. The introduction of silicone gel-filled breast implants started a new

era in breast reconstruction following World War II, and these was widely accepted after introduction of tissue expansion as a first step. It has many benefits, but needs long term follow up and associated with some complications (Radovan, 1982).

At the early seventies, with a better understanding of the vascular supply to the skin, microvascular techniques were introduced and this resulted in re-introduction of the latissimus dorsi muscle flap for breast reconstruction which became a cornerstone flap for a short period of time as it had many disadvantages like inadequate bulk of the muscle, often necessitating an underlying implant to fully reconstruct the breast volume. In addition, the donor site scar left on the back was significant (Del Vecchio and Fichadia, 2012).

In 1982, Carl Hartrampf introduced the transverse rectus abdominis myocutaneous flap "TRAM" flap which became one of the most popular methods of autologous breast reconstruction today but not without drawbacks. A major disadvantage of this flap is the sacrifice of the rectus muscle, which often results in significant donor site morbidity (Hartrampf et al., 1982).

further improvements of the microsurgical techniques, perforator flaps became popular in the 1990s with development of multiple flaps which depend on the skin and subcutaneous tissue to reconstruct the breast and keep the muscles in place to preserve its function. But this technique needs extensive experience in microvascular techniques and is