Preparation and Evaluation of Some Compounds Used as Hydrogen Sulphide Scavengers in Petroleum Industry

BY

Maamoun Mohamed Tawfik Khattab

B.Sc. Science (Chemistry and Zoology), Zagazig University 1979

A Thesis Submitted in Partial Fulfillment of
The Requirement Master Degree in
Environmental Science

Department of Environmental Basic Science Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

Preparation and Evaluation of Some Compounds Used as Hydrogen Sulphide Scavengers in Petroleum Industry

By

Maamoun Mohamed Tawfik Khattab

B.Sc. Science (Chemistry and Zoology), Zagazig University, 1979

This Thesis Towards a Master Degree in Environmental Science Has Been Approved by:

 Name Prof. Mostafa Hassan Khalil Professor of Analytical Chemistry; Faculty of Science - Ain Shams University. Prof. Abdel Fattah Mohamed Mohsen Badawy Professor of Applied Chemistry; Egyptian Petroleum Research Institute. 	Signature
3. Prof. Nadia Gharib Kandile Professor of Organic and Environmental Chemistry; Faculty of Woman Ain Shame University	•••••
 Faculty of Women- Ain Shams University. 4. Dr. Taha Abdul Azeim Mohamed A Razek. Ass. Professor of Environmental Analytical Chemistry; Institute of Environmental Studies and Research – Ain Shams University. 	
5. Prof. Ahmed Mohamed Al-Sabagh . Professor of Applied Chemistry; Egyptian Petroleum Research Institute.	•••••

Preparation and Evaluation of Some Compounds Used as Hydrogen Sulphide Scavengers in Petroleum Industry

BY

Maamoun Mohamed Tawfik Khattab

B.Sc. Science (Chemistry and Zoology), Zagazig University, 1979

A Thesis Submitted in Partial Fulfillment
of
The Requirement Master Degree
in
Environmental Science
Department of Environmental Basic Science

Under The Supervision of:

1. Prof. Nadia Gharib Kandile

Professor of Organic and Environmental Chemistry; Faculty of Women- Ain Shams University.

2- Dr. Taha Abdul Azeim Mohamed A Razek.

Ass. Professor of Environmental Analytical Chemistry; Institute of Environmental Studies and Research – Ain Shams University.

3-Prof. Ahmed Mohamed Al-Sabagh.

Professor of Applied Chemistry; Egyptian Petroleum Research Institute.

Acknowledgment

All praise is to **Allah** (**Al-Mighty**), the Beneficent, the Merciful, without whose mercy and guidance this work would never have been started nor completed. I praise Him (**Al-Mighty**) as much as the heavens and earth and what are in between or behind.

I would like to express my sincere gratitude and appreciation to the supervisor of the present work, **Prof. Nadia Gharib Kandile**Professor of Organic and Environmental Chemistry; Faculty of Women-Ain Shams University for her great effort in planning this research, her kind care during the progress of this work, her sincere encouragement, and finishing of this work.

From my deep heart, many thanks are paied to **Dr. Taha Abdul Azeim Mohamed A Razek.** Assist. Prof. of Environmental Analytical
Chemistry; Institute of Environmental Studies and Research – Ain Shams
University for proposing this research, for his scientific support,
facilitate any obstacle and his continuous advises.

Also, sincere thanks are paid to **Prof. Ahmed Mohamed Al-Sabagh**, Professor of Applied Chemistry; Egyptian Petroleum Research Institute for his support, continuous encouragement and scientific discussion at the obtained data.

I wish to express my great thanks and sincere gratitude to **Dr. Mahmoud Reyad** Egyptian Petroleum Research Institute for his effective support, great assistance, and continuous encouragement.

Sincere thanks are also extended to staff of Institute of Environmental Studies and Research especially Basic Science Department staff for their continuous support and encouragement.

Sincere thanks are also extended to all my colleagues in Qarun Petroleum Company for their kind assistance and encouragement. For all of them, I am exceedingly grateful.

ABSTRACT

 H_2S gas has bad effect on the personnel health working in the production field and can lead to death.

Also, H₂S has serious effect on the production facilities ranged from normal corrosion to sulphide stress cracking "SSC" which is considered a disaster for equipments, personnel, environment and profit. Sulphide stress cracking destroy the facilities, delay the production and the leak of H₂S through the crack can lead to serious environmental problems such as fires and acid rain problems which are harmful to the plant and consequently both animal and personnel.

This study was conducted to evaluate some amine compounds which are safer to health and environment as H_2S scavenger and compare their efficiency with commercial H_2S scavenger that already have been applied in the oil fields.

Three compounds MF1, MF2 and MF3 have been formulated and evaluated as H₂S scavengers at different dosages and different temperatures. The best compound MF3 was re-evaluated against commercial scavenger of EPRI 710 and 730 that are widely distributed for petroleum companies in Egypt.

The study revealed that the prepared compound MF3 is strongly competitor for commercial compound as H₂S scavenger.

The surface activity of the prepared compounds was evaluated, also the results of evaluation of the corrosion inhibition efficiency of the prepared compounds against the commercial products MF3 showed that these compounds are strongly competitor as corrosion inhibitor.

CONTENTS	Page
CHAPTER I: Introduction	1
1-Hydrogen Sulfide in Oil and Gas	1
2-Hydrogen Sulfide Emissions from Oil and Gas Facilities	2
3-Hydrogen Sulfide Problems	5
3.1- Human Health Effects from Exposure to Hydrogen Sulfide.	6
3.2- Equipment Attack	10
3.2.1- Hydrogen Sulfide Corrosion	10
3.2.2- Sulfide Stress Cracking (SSC)	12
3.3- The Environmental Effects.	13
3.3.1- Acid Rain.	15
3.3.2- Conditions Required for Hydrogen Sulfide to Cause an Explosion.	15
3.3.3- Hydrogen Sulfide Effects on Economy	16
4- Hydrogen sulfide Sources	16
4.1- Natural	16
4.2- Sulfate-Reducing Bacteria (SRB)	17
4.2.1- Physical Requirements for the Microbiological Production of Hydrogen Sulfide	17
Temperature	18
pH	18
Metabolic Requirements	18
Nutrients	19

5. H2S Treatment.	19
5.1. Sulfur Recovery	19
5.2. H ₂ S Removal Using Alkanolamines and Related Materials	20
Hybrid and Physical Solvents	22
H ₂ S Scavenger.	23
CHAPTER II: Review of the literature	26
CHAPTERIII: Materials and methods	36
Materials and methods	36
	37
2. Sour Crude Oil	
3. Preparation of H ₂ S Scavengers	37
4. Confirmation of Chemical Structure Using FTIR	37
5. Evaluation of the prepared H ₂ S scavengers	37
5.1. Sampling Cylinder	37
5.2. Sampling Method	38
5.3. Scavenger Injection Method	38
5.4. H ₂ S Measurement	40
6. Surface Tension Measurements	40
6.1. Surface Tension Measurements (γ)	40
6.2 Critical Micelle Concentration (CMC)	40
6.3 Efficiency (PC20)	41
6.4 Surface Excess Concentration (Γ_{max})	41
6.5 Minimum Surface Area Per Molecule (A _{min})	42

6.6 Effectiveness πcmc	42
6.7 Gibbs free energies of adsorption (ΔG_{ad}) and micelle formation (ΔG_{mic})	42
7. Efficiency of the Prepared H2S Scavengers as Corrosion Inhibitor	43
7.1 Chemical Composition of X- 65 Carbon Steel Alloy	43
7.2 Preparation of Working Electrode for Electrochemical Measurements.	43
7.3 Procedures Used For Corrosion Measurements Using Potentiodynamic Polarization Technique	44
CHAPTER IV : Results and Discussion.	47
Structure of H2S Scavenger	47
1. Confirmation of the chemical structure	48
2. Factors Affect the H ₂ S Scavenger Performance	52
2.1 Effect of the Scavengers Concentration.	52
2.2 Chemical Structure of H ₂ S Scavenger	61
2.3 Effect of Reaction Time	64
2.4 Effect of Temperature	67
3. Comparison Study	69
4. Surface Parameters	78
5. Potentiodynamic polarization measurements	81
CHAPTER V : Summary and Conclusion	86
Summary	86

Conclusion.	91
CHAPTER VI : References	92
CHAPTER VII: Arabic Summary	

	LIST OF TABLES	Page
Table (1):	List of the health effects associated with H ₂ S exposures of varying durations.	9
Table (2):	Typical Alkanolamine Parameters	23
Table (3):	Physical properties of Aldrich monoethanolamine	36
Table (4):	Physical properties of EPRI 710 and EPRI 730 products	36
Table (5):	The chemical composition of X-65 type tubing steel	43
Table (6):	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 20°C for NQ3 (blank H ₂ S reading 4000ppm).	53
Table (7) :	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 40°C for NQ3 (blank H ₂ S reading 4000ppm).	54
Table (8) :	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 60°C for NQ3 (blank H ₂ S reading 4000ppm).	55
Table (9):	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 80°C for NQ3 (blank H ₂ S reading 4000ppm).	56
Table (10) :	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 20°C for SWQ3 (blank H ₂ S reading 14000ppm).	57
Table (11) :	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 40°C for SWQ3 (blank H ₂ S reading 14000ppm).	58
Table (12) :	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 60°C for SWQ3 (blank H ₂ S reading 14000ppm).	59
Table (13):	Effect of the dose of the prepared H ₂ S scavengers on the H ₂ S reduction efficiency (E, %) at temperature 80°C for SWQ3 (blank H ₂ S reading 14000ppm).	60
Table (14):	Influence of the reaction time on the H ₂ S	65

	decreasing, conc. Of the prepared scavengers, 500ppm at 40°C (NQ3, blank H ₂ S reading 4000ppm)	
Table (15):	Influence of the reaction time on the H ₂ S decreasing, conc. of the prepared scavengers, 500ppm at 40°C (SWQ3, blank H2S reading 14000 ppm)	66
Table (16):	H ₂ S reading after using different formula of H ₂ S scavengers at 20°C. (NQ3, blank H ₂ S reading 4000ppm)	70
Table (17):	H ₂ S reading after using different formula of H ₂ S scavengers at 40°C. (NQ3, blank H ₂ S reading 4000ppm)	71
Table (18):	H ₂ S reading after using different formula of H ₂ S scavengers at 60°C. (NQ3, blank H ₂ S reading 4000ppm)	72
Table (19):	H ₂ S reading after using different formula of H ₂ S scavengers at 80°C. (NQ3, blank H ₂ S reading 4000ppm)	73
Table (20):	H ₂ S reading after using different formula of H ₂ S scavengers at 20°C (SWQ3, blank H ₂ S reading 14000ppm).	74
Table (21):	H ₂ S reading after using different formula of H ₂ S scavengers at 40°C (SWQ3, blank H ₂ S reading 14000ppm).	75
Table (22):	H ₂ S reading after using different formula of H ₂ S scavengers at 60°C (SWQ3, blank H ₂ S reading 14000ppm).	76
Table (23):	H ₂ S reading after using different formula of H ₂ S scavengers at 80°C (SWQ3, blank H ₂ S reading 14000ppm).	77
Table (24) :	Surface tension and thermodynamic properties for the prepared H ₂ S scavengers at 25°C.	80
Table (25):	Parameters obtained from potentiodynamic polarization measurements of carbon steel electrode immersed in Qarun oil formation water containing various concentrations of the inhibitor MF3.	83
Table (26):	Parameters obtained from potentiodynamic polarization measurements of carbon steel electrode	84

	immersed in Qarun oil formation water containing various concentrations of the inhibitor MF2.	
Table (27):	Parameters obtained from potentiodynamic	85
	polarization measurements of carbon steel electrode	
	immersed in Qarun oil formation water containing	
	various concentrations of the inhibitor MF1.	

LIST OF FIGURES	Page
Figure (1): Sulfur Distribution in Crude Oil	4
Figure (2): BP group annual total air emissions by Pollutant	14
1999–2004 (See Color Plates)	
Figure (3): Molecular structure of common gas treating amines	23
Figure (4): Sampling cylinder	38
Figure (5): Scavenger injection method	39
Figure (6): Volta Lab80 Potentiostat (PGZ 402)	45
Figure (7): Electrochemical cell	46
Figure (8): FT-IR spectrum for MF1	49
Figure (9): FT-IR spectrum for MF2	50
Figure (10): FT-IR spectrum for MF3	51
Figure (11): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	53
dosage on the H ₂ S reduction (ppm) at temperature	
20°C after 60 min (NQ3, blank H ₂ S reading 4000	
ppm).	
Figure (12): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	54
dosage on the H ₂ S reduction (ppm) at temperature	
40°C after 60 min (NQ3, blank H ₂ S reading 4000	
ppm).	
Figure (13): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	55
dosage on the H ₂ S reduction (ppm) at temperature	
60°C after 60 min (NQ3, blank H ₂ S reading 4000	
ppm).	
Figure (14): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	56

dosage on the H ₂ S reduction (ppm) at temperature	
80°C after 60 min (NQ3, blank H2S reading 4000	
ppm).	
Figure (15): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	57
dosage on the H ₂ S reduction (ppm) at temperature	
20°C after 60 min (South West Qarun Site, blank	
H2S reading 14000 ppm).	
Figure (16): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	58
dosage on the H ₂ S reduction (ppm) at temperature	
40°C after 60 min (South West Qarun Site, blank H ₂ S	
reading 14000 ppm).	
Figure (17): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	59
dosage on the H ₂ S reduction (ppm) at temperature	
60°C after 60 min (South West Qarun Site, blank H ₂ S	
reading 14000 ppm).	
Figure (18): Effect of H ₂ S scavengers (MF1, MF2 and MF3)	60
dosage on the H ₂ S reduction (ppm) at temperature	
80°C after 60 min (South West Qarun Site, blank H ₂ S	
reading 14000 ppm).	
Figure (19): H ₂ S scavenger (ppm) vs. reaction time (min) for the	65
prepared scavengers, 500ppm at 40°C (NQ3, blank	
H ₂ S reading 4000ppm)	
Figure (20): H ₂ S scavenger (ppm) vs. reaction time (min) for the	66
prepared scavengers, 500 ppm at 40°C (SWQ3, blank	
H ₂ S reading 14000 ppm).	
Figure (21): Effect of temperature on the H2S removing for MF1,	68
MF2 and MF3 at 500 ppm for NQ3 crude (blank	
	l