Immunohistochemical Expression of Debiquitinating Enzyme OTUB1 in Colorectal Carcinoma

Thesis

Submitted for partial fulfillment of Master Degree in Pathology

By

Diana Zarif Saad Beshara M.B., B.Ch

Under Supervision of

Prof. Dr. Nedal Ahmed Hegazy

Professor of Pathology Faculty of Medicine – Ain Shams University

Prof. Dr. Riham M. Abu Zeid

Professor of Pathology Faculty of Medicine – Ain Shams University

Prof. Dr. Eman Abdel-Salam Ibrahim

Assistant Professor of Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Acknowledgement

Before all, thanks to God

I owe a particular debt to **Prof.Dr. Nedal Ahmed Hegazy**, whom I had the privilege to work under her kind and indispensable competent supervision.

My deepest gratitude to **Prof. Dr. Riham M. Abu Zeid**, for helping me accomplish this work and for always being supportive and patient with me.

Special acknowledgment is owed to **Dr. Eman Abdel-Salam Ibrahim**, for the great effort that maintained the progress of this work and ultimately put the work together.

Finally, I acknowledge my family for their unconditional support and endless blessings.

Diana Zarif Saad Beshara

Contents

Page No.	Subject
List of Abbreviations	i
List of Tables	vi
List of Figures	vii
List of Graphs	X
Introduction	1
Aim of the Work	5
Review of Literature	
Colorectal Carcinoma	6
Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1)	67
Material and Methods	73
Results	77
Illustrative Cases	89
Discussion	113
Summary	125
Conclusion and Recommendations	127
References	128
Arabic Summary	

List of Abbreviations

Abbrev. Full-term

AFAP : Attenuated Familial Adenomatous Polyposis

AFP : Alpha Fetoprotein

AJCC : American Committee for Cancer

AMACR : Alpha Methyl Acyl Coenzyme A Racemase

APC : Adenomatous Polyposis Coli

API : Asian/Pacific Iskander

ATP : Adenosine triphosphate

β-HCG: Beta Human chorionic gonadotropin

BMPR1A: Bone Morphogenetic Protein Receptor, type IA

BRAF: B-Raf Proto-oncogene, Serine/threonine Kinase

CAP : College of American Pathologists

CDX2 : Caudal Type Homeobox 2

CEA : Carcinoembryonic Antigen

CHRPE : Congenital Hypertrophy of the Retinal Pigment

Epithelium

CIMP : CpG Island Methylation Pathway

CIN : Chromosomal Instability Pathway

CK : Cytokeratin

CpG : 5'—C—phosphate—G—3'

CRC : Colorectal Cancer

DAB : Diaminobenzidine

DM : Diabetes Mellitus

DNA : Deoxyribonucleic Acid

DUBs : Deubiquitinating Enzymes

E : Enzyme

EMT : Epithelial Mesenchymal Transition

EMVI : Extramural Venous Invasion

EpCAM: Epithelial Cell Adhesion Molecule Gene

FAP : Familial Adenomatous Polyposis

GI : Gastrointestinal

GRAIL : Gene Related to Anergy In Lymphocytes

H&E: Haematoxylin and Eosin

HDI : Human Development Index

HNPCC: Hereditary Nonpolyposis Colorectal Cancer

HPS: Hyperplastic Polyposis Syndrome

HPs: Hyperplastic Polyps

IBD : Personal History of Inflammatory Bowel Disease

IGF : Insulin-like Growth Factor

IHC: Imunohistochemistry

IL: Interleukin

IMVI : Intramural Venous Invasion

IRR : Incidence Rate Ratio

IRS : Immunoreactivity Score

JAMMs : JAMM/MPN Domain Associated Metallopeptidases

JPS : Juvenile Polyposis Syndrome

KRAS: Kirsten Rat Sarcoma-2 Virus Oncogene

LKB1 : Liver Kinase B1

LOH : Loss of Heterozygosity

M : Metastasis

MANEC: Mixed Adenoneuroendocrine Carcinoma

MAP : MUTYH Associated Polyposis

MCPIP : Monocyte Chemotactic Protein Induced Protein

MINDY : Motif Interacting with Ub-containing Novel DUB

Family

MJD : Machado-Joseph Disease Protein Domain

Proteases

MLH1 : MutL Homolog 1

MMR : Mismatch Repair Gene

MSH2 : MutS Protein Homolog 2

MSH6 : MutS Homolog 6

MSI : Microsatellite Instability

MSI-H : Microsatellite Instability-High

MSS : Microsatellite Stable

MUC1 : Mucin 1 Cell Surface Associated

MUC2 : Mucin 2 Cell Surface Associated

MUC5AC: Mucin 5AC

MUTYH : MutY Homolog

N : Node

NEC : Neuroendocrine carcinomas

NF-Kb : Nuclear Factor Kappa-Light-Chain-Enhancer of

Activated B cells

NOS : Not Otherwise Specified

NS : Non-significant

OTUB1 : OTU domain-containing ubiquitin aldehyde-

Binding protein

OTUs : Ovarian Tumor Domain Containing Proteases

P : Probability

PDC: Poorly Differentiated Clusters

PIK3CA: Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase,

Catalytic Subunit Alpha

PJS: Peutz-Jeghers Syndrome

PMS2 : Postmeiotic Segregation Increased 2

PNI : Perineural Invasion

PSC: Primary Sclerosing Cholangitis

S : Significant

SD : Standard Deviation

SES : Socioeconomic Status

SMAD4 : Mad-related protein4

SPS : Serrated Polyposis Syndrome

SPSS : Statistical Package for Social Science

SSA/Ps : SSA and Sessile Serrated Polyp

SSAs : Sessile Serrated Adenomas

STK11 : Serine/threonine kinase 11

T : Tumor

TGF-β : Transforming Growth Factor-β

TNM: Tumor Node Metastasis

TP53 : Tumor Protein p53

TSAs : Traditional Serrated Adenomas

UB : Ubiquitin

UCHs: Ubiquitin Carboxy-terminal Hydrolases

UICC: Union Internationale Contre Cancer

UPP : Ubiquitin Proteasome Pathway

USA : United States of America

USP22 : Ubiquitin Specific Protease 22

USPs: Ubiquitin Specific Proteases

VEGF : Vascular Endothelial Growth Factor

VI : Venous Invasion

WHO: World Health Organization

List of Tables

Table No	. Title	Page No.
Table (1):	Risk factors for CRC in IBD	26
Table (2):	WHO classification of colorectal carcin	oma40
Table (3):	WHO Histological grade of convocolorectal adenocarcinoma	
Table (4):	Dukes staging system	57
Table (5):	Kirklin-Associates Staging System	58
Table (6):	Astler-Coller Staging System	58
Table (7):	TNM classification for colorectal can	cers59
Table (8):	Anatomic stage/prognostic groups	60
Table (9):	Prognostic variables in colorectal can	cer:63
Table (10):	Distribution of cases according to a gender	_
Table (11):	Distribution of cases according to turn and their sites 79	nor size
Table (12):	Distribution of cases according to c tumor invasion (T), lymph nodes me distant metastasis, stage and histological	etastasis,
Table (13):	Distribution of OTUB1 expression studied cases	
Table (14):	Relation between OTUB1 expression a patients, gender, size of tumor and site of	
Table (15):	Relation between OTUB1 expression histological grading, depth of tumo node metastasis, distant metastasis and	or,lymph

List of Figures

Figure No	o. Title Page N	ο.
Figure (1):	Molecular alteration of colitis-associated colorectal cancer	27
Figure (2):	Adenoma-carcinoma sequence	35
Figure (3):	Microsatellite instability pathway	36
Figure (4):	Evolutional pathways for colorectal morphogenesis	39
Figure (5):	The ubiquitin proteasome system	68
Figure (6):	The ubiquitination and deubiquitination processes	69
Figure (7):	OTUB1 Staining of human breast carcinoma shows strong cytoplasmic positivity served as positive control (IHC x200)	89
Figure (8):	OTUB1 Staining of non-neoplastic colonic mucosa shows negative staining (IHC x200)	90
Figure (9):	A case of low grade colonic adenocarcinoma formed of malignant glands lined by hyperchromatic mildly anaplastic epithelial cells (H&E x200).	91
Figure (10):	Same case shows low expression of OTUB1 with score 1 (IHC x200).	92
Figure (11):	A case of low grade colonic adenocarcinoma formed of malignant glands lined by hyperchromatic mildly anaplastic epithelial cells (H&E x200).	}
Figure (12):	Same case shows low expression of OTUB1 with score 2 (IHC x200).	94

Figure (13):	Same case shows low expression of OTUB1 (IHC x400)95
Figure (14):	A case of low grade colonic adenocarcinoma (H&E x200)
Figure (15):	Same case shows low expression of OTUB1with score 2 (IHC x100)
Figure (16):	A case of high grade colonic adenocarcinoma formed of malignant nests with hyper-chromatic markedly anaplastic epithelial cells (H&E x100)
Figure (17):	Same case shows high expression of OTUB1with score 9 (IHC x200)
Figure (18):	A case of high grade colonic adenocarcinoma formed of malignant nests with hyper-chromatic markedly anaplastic epithelial cells (H&E x200)
Figure (19):	Same case shows high expression of OTUB1 with score 9 (IHC x100)101
Figure (20):	A case of low grade colonic adenocarcinoma invading submucosa (T1) (H&E x40) 102
Figure (21):	Higher magnification of previous case (H&E x100)
Figure (22): I	Previous case shows low expression of OTUB1 with score 2 (IHC x100) 104
Figure (23):	A case of low grade colonic adenocarcinoma invading muscularis propria (T2) (H&E x40) 105
Figure (24):	Previous case showing low expression of OTUB1 with score 1 (IHC x40) 106
Figure (25):	Higher magnification of previous case (IHC x200)

Figure (26):	Higher magnification of previous case (IHC x400)
Figure (27):	A case of high grade colonic adenocarcinoma formed of malignant nests and cords with hyperchromatic markedly anaplastic epithelial cells, infiltrating up to serosal fat (T3) (H&E x200)
Figure (28):	Previous case showing high expression of OTUB1 with score 9 (IHC x100)
Figure (29):	A case of low grade colonic adenocarcinoma invading urinary bladder wall (T4) (H&E x100)
Figure (30):	Same case shows high expression of OTUB1 with score 6 (IHC x100)

List of Graphs

Graph N	o. Title P	age No.
Graph (1):	Age distribution in the studied cases	78
Graph (2):	Sex distribution in the studies cases	78
Graph (3):	Distribution of OTUB1 expression in studied cases	
Graph (4):	Immunohistochemical expression of O' and histopathological grading of tumor	
Graph (5):	Mean of OTUB1 score and histopatholograding +/- 1 SD. Mean OTUB1 express low grade tumors was 2.77 +/- 1 SD while 7.21 +/- 1 SD in high grade tumors	ion in e was
Graph (6):	Validity of OTUB1 score in predicting grades.	
Graph (7):	Correlation between OTUB1 expression depth of tumor.	

Introduction

orldwide, Colorectal cancer (CRC) is by far the most common malignancy of the gastrointestinal tract ranking the third most commonly diagnosed malignancy in men while the second most common cancer in women and the fourth leading cause of cancer death according to 2012 GLOBOCAN database. More than two-thirds of all cases and about 60% of all deaths occurred in countries with a high or very high human development index (HDI) (Arnold et al., 2017).

CRC is positively associated with human development with estimated rate about six to seven times higher in very high HDI compared to low HDI regions in both sexes. With an etiology linked to lifestyle and environment, including changes in dietary and metabolic factors. Therefore CRC can be considered a clear marker of developmental transition (*Fidler et al.*, 2016).

CRC diagnosis rates are highest in Australia and New Zealand, with the lowest rates foundin Western Africa(*Ferlay et al.*, 2013).

CRC in Egypt, as most of developing countries, has lower incidence than that of western countries with sedentary lifestyle. In Egypt, it is the sixth most common cancer constituting about 4% of total cancers in both sexes (*Zeeneldin et al.*, 2012).

CRC is generally thought of as a disease of older persons, with more than 90% of patients being diagnosed after the age of 55 years. It is well known, however, that CRC also affects a young population. Recent studies suggested that as many as 7% of patients who developed CRC were under 40 years of age, and this incidence keeps increasing (*Berut et al.*, 2013).

The epidemiology of CRC in developing countries differs from that of developed countries. CRC in developing countries including Egypt is usually characterized by low incidence, young age of onset and left-sided location (*Zahir et al.*, 2014).

El-Bolkainy et al. (2006) referred to the difference in the site of CRC distribution between developed and developing countries, for instance in USA, rectal carcinoma constituted 25% of all CRC while in Africa it is 50%.

In most Western populations, the average lifetime risk for CRC is in the range of 3–5%. However, this risk almost doubles in individuals with a first-degree family member with CRC who was diagnosed at 50–70 years of age; the risk triples if the first-degree relative was <50 years of age at diagnosis (*Kuipers et al., 2015*).

More than 50% of patients with CRC will develop metastatic disease to their liver over the course of their life, which ultimately results in death for more than two thirds of these patients. Currently, hepatic resection of CRC liver