

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

MODERN AND MODIFIED TECHNIQUES FOR STAPHYLOCOCCI TOXINS ASSAY

BY ZEINAB IBRAHIM MOHAMMAD SADEK

B.Sc.Agric (Food Technology) Cairo Univ., (1976) M.Sc.Agric (Dairying) Cairo Univ., (1986)

A thesis submited in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN
Agricultural Science
(Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University 1996

8 21

Approval Sheet

MODERN AND MODIFIED TECHNIQUES FOR STAPHYLOCOCCI TOXINS ASSAY

By ZEINAB IBRAHIM MOHAMMAD SADEK

B. Sc. Agric. (Food Technology) Cairo Univ., (1976) M. Sc. Agric (Dairying) Cairo Univ., (1986)

This thesis of Ph. D. Degree has been approved by:

Prof. Dr. T. A. NASSIB Head of Dairy Science and Technology Dept., Fac. Of

Agric., Mansoura University.

Prof. Dr. A.E. SHEHATA

Prof. Of Dairy Microbiology and Technology, Fac. Of Agric., Ain Shams University, and Dean Fac. Of Agric., Ain Shams University.

Prof. Dr.M.N. MAGDOUB

Prof. Of Dairy Microbiology,

Fac. Of Agric.,

Ain Shams University.

(Supervisor)

FOR

amblegy,

MODERN AND MODIFIED TECHNIQUES FOR STAPHYLOCOCCI TOXINS ASSAY

BY ZEINAB IBRAHIM MOHAMMAD SADEK

B.Sc.Agric (Food Technology) Cairo Univ., (1976) M.Sc.Agric (Dairying) Cairo Univ., (1986)

Under the Supervision of

Prof. Dr.M.N. Magdoub

Professor of Dairy Microbiology and Technology, Faculty of Agriculture Aim Shams University.

Prof. Dr.M.M. Sabbour

Professor of Dairy Microbiology, National Research Center.

Dr. A.M.Gaafar

Assoc.Prof., Dairy Science and Technology, Faculty of Agriculture Ain Shams University

```
boilil
loctor:
occal
usion,
ation
out for
a was
. . itivity
eves and
sendaced.
a assay
a milk,
+ assay
different
.d. Gouda
as higher
bas one.
briuot . . .
To no succession of
e morhods
armsults):
sery fast,
- Litarialt).
And open of SETs
```

and estimated concentration.

Abstract

Zeinab Ibrahim Mohammad Sadek. Modern and modified techniques for staphylococci toxins assay. Unpublished Doctor of Philosophy dissertation, University of Ain Shams, 1996.

Evaluation and standardization of different Staphylococcal enterotoxin assay techniques (Microslide double gel-diffusion, Electroimmunodiffusion, Reversed passive latex agglutination and Enzyme linked immunosorbent assay) were carried out for standard reference enterotoxins A,B and D. Evaluation was achieved by measuring and compairing the method sensitivity and confirmatory responces. The resulting standard curves and assay by these methods were reapplied on laboratory produced enterotoxins for further evaluation.

Evaluation of the applicability of these methods for assay of reference enterotoxins types A,B and D seeded in milk, Domiati and Ras cheeses, were implemented. In addition, assay of enterotoxin A,B and D produced by *S.aureus* different strains inoculated in raw, pasteurized milk and Domiati, Gouda and Ras cheeses was studied using the different methods.

The RPLA and ELISA methods showed the higher sensitivity than Microslide double gel-diffusion and Electroimmunodiffusion methods. Moreover, ELISA was found as the most sensitive and confirmatory method for detection of staphylococcal enterotoxins

Based on the examination purpose, the most reliable mothods were:

- 1. ELISA (Sensitivity = 1.0 ng/ml, 90 min. to get a results) was the preferable method for very accurate, very fast, testing trace amount of SETs.
- 2. RPLA (Sensitivity = 1.25-1.5 ng/ml, 24 h. to get a result). was the preferable method for identifying the type of SETs and estimated concentration.

- 3. Electroimmunodiffusion (Sensitivity = 125 ng/ml, 48h. to get a result) for identifying SETs with approximate toxin concentration and low costs).
- 4. Microslide (Sensitivity = 125 ng/ml, 72-96h. to get a result) for identifying SETs with approximate toxin concentration and very low costs).

Key words: S.aureus-Enterotoxins-Microslide double gel diffusion-Electroimmunodiffusion - Reversed passive latex agglutination (RPLA)-Enzyme linked immunosorbent assay (ELISA) - Milk-Cheese.

ACKNOWLEDGMENT

The author would like to express her gratitude and sincere appreciation to Prof. Dr. M.N.Magdoub, Professor of Dairy Microbiology, Faculty, of Agriculture, Ain Shams University, Prof. Dr.M.M Sabbour, Professor of Dairy Microbiology, Dairy, & Food Technology Department, National Research Center and Dr. A.M. Gaafar, Associate Professor of Dairy Science & Technology, Faculty of Agriculture, Ain Shams University, for their kind supervision, valuable suggestions, continuous encouragement and valuable advice.

Many thanks and appreciation would also be expressed to Dr. K. R. EL. Dairouty, Associate Professor of Dairy Microbiology, Dairy & Food Technology Department, National Research Center, for his great help and guidance he affored during all stages of this work.

The author appreciates the help and cooperation of her colleagues in the Dairy Research Laboratory, National Research Center and Department of Food Science, Faculty of Agriculture, Ain Shams University.

₽ag e				
1				
3				
3				
33				
Č				
Τ				
7				
8				
6				
6				
6		•		
01				
12				
41				
14				
7117				
17				
.s28				
28				
32				
39				
39				
39				
9839				
139				
40				
40				
40				
I				
42				
CT		111 to 10 10 100	ette (1178 alet 14	misi.