NUMERICAL ANALYSIS OF INDOOR AIR QUALITY IN CLINICAL PHARMACIES

By

Eng.Rana Essam El-Din Khalil Hassan Khalil

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfilment of the

Requirements for the Degree of

DOCTOR of PHILOSOPHY

In
MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIROUNIVERSITY
GIZA, EGYPT
2016

NUMERICAL ANALYSIS OF INDOOR AIR QUALITY IN CLINICAL PHARMACIES

 $\mathbf{B}\mathbf{y}$

Eng.Rana Essam El-Din Khalil Hassan Khalil

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfilment of the

Requirements for the Degree of

DOCTOR of PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Samy M. Morcos

Prof. Dr. Mohamed Aly Hassan

Professor, Mechanical Power Engineering Department, Faculty of Engineering , Cairo University Professor, Mechanical Power Engineering Department , Faculty of Engineering , Cairo University

Dr. Esmail M. Bialy

Lecturer, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIROUNIVERSITY
GIZA, EGYPT

2016

NUMERICAL ANALYSIS OF INDOOR AIR QUALITY IN CLINICAL PHARMACIES

By

Eng.Rana Essam El-Din Khalil Hassan Khalil

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfilment of the

Requirements for the Degree of

DOCTOR of PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Approved by examining committee

Prof. Dr. Samy M. Morcos

Main Thesis Advisor,
member

Prof. Dr. Mohamed Aly Hassan

Thesis Advisor, member

Prof. Dr. Mahmoud Ahmed Fouad
Internal Examiner

Prof. Dr. Osama EzzatAbd-Ellatif
Professor, Faculty of Engineering, Banha University

External Examiner

FACULTY OF ENGINEERING, CAIROUNIVERSITY
GIZA, EGYPT

2016

Engineer: Rana Essam Eldin Khalil

Date of Birth: 20 / 05 / 1988

Nationality: Egyptian

E-mail: Rana88khalil@gmail.com

Phone: (+2) 01280076684

Address: 6 Ibn Malek Street, Giza, Egypt

Registration Date:

Awarding Date:

Degree: Doctor of Philosophy

Department: Mechanical Power Engineering

Prof. Dr. Samy Mourad Morcos

Prof. Dr. Mohamed Ali Hassan

Supervisors : Dr. Ismail ElBialy

Prof. Dr. Samy Mourad Morcos

Examiners: Professor of mechanical power engineering

Prof. Dr. Mohamed Ali Hassan

Professor of mechanical power engineering

Prof. Dr. Mahmoud Fouad

Professor of mechanical power engineering

Prof. Dr. Osama Ezzat Abdel-Latif

Head of department of mechanical power engineering at Shoubra,

faculty of engineering, Benha university.

Title

NUMERICAL ANALYSIS OF INDOOR AIR QUALITY IN CLINICAL PHARMACIES

Summary

The present work describes and analyses the flow and heat transfer regimes inside Clinical Pharmacies through investigating a typical pharmacy. Five different design configurations of Clinical Pharmacies HVAC systems have been compared numerically to assess their agreement with international standards of clean room ventilation and airflow pattern requirements. It was concluded that the third configuration is the best in contaminant control. Numerical approach was utilized to adequately identify the airflow patterns, temperatures, relative humidity distributions and particle concentrations.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation and infinite thanks to **Prof. Dr.Samy M. Morcos, Prof.Dr. Mohamed Aly Hassan and Dr. Esmail M. Bialy** professors of mechanical power - faculty of engineering - Cairo University, for their support, continuous encouragement and distinctive supervision throughout the course of this work.

In addition, I would like to thank my family members; My Father, Mother and Twin for their magnificent role of supporting and encouraging me to go ahead in the right way of progress and success.

Finally, I cannot forget the support of my colleagues and friends as well as from my Professors for their encouragement and concern throughout the scope of the work.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	
TABLE OF CONTENTS	
LIST OF FIGURESLIST OF TABLES	v vi
NOMENCLATURE	xvii
GREEK LETTERS	xix
ABBREVIATIONS	XX.
ABSTRACT	xxi
Chapter 1	13
Introduction	13
1.1 Introduction	13
1.2 Clean Rooms	13
1.3 Clean room Applications	14
1.4 Clean room Classification	14
1.4.1 ISO Classification of Clean Rooms:	
1.5 Sources of Contamination	
1.5.1. External Sources:	
1.5.2. Internal Sources:	
1.6 HVAC Design Considerations For Clean Rooms	
1.6.1 Temperature	
1.6.2 Relative Humidity	
1.6.3 Positive Pressurization	18
1.6.4 Increased air supply	
1.6.5 Airflow Pattern	
1.7 Control of Airborne Particles	
1.7.1 Filtration System	
1.7.2 Clean Room Architecture	
1.7.4 Control of Commodities	
1.7.4 Control of Commodities	
1.7.5 Control of Cosmetics	
1.7.6 Minimizing of Electrostatic Discharge (ESD)	
1.7.7 Measurement and Instrumentation	23

1.8 Outline of the Thesis	23
Chapter 2	25
Literature Review	25
2.1 General	25
2.2 Investigation Methods	25
2.2.1. Experimental investigations	25
2.2.2. Numerical investigations	26
2.3 Ventilation Effect on Airborne Particles Distribution:	26
2.4. Review of Previous Work of Flow Regimes in Clean rooms	28
2.5 Concluding Remarks	41
2.6 Scope of the Present Work:	41
Chapter 3	42
CFD Fluid Flow Governing Equations	42
3.1 Introduction	42
3.2 Governing Equations of Fluid Flow	42
3.2.1 Mass Conservation Equation in Three Dimensions	42
3.2.2 Momentum Equations In Three Dimensions	43
3.2.3 Energy Equation in Three Dimensions	45
3.2.4 Species Transport Equations	47
3.2.5 General Form of "Conservation" Equation	48
3.3 Turbulence Modeling	48
3.3.1 Selecting Turbulence Model	49
3.3.2 Reynolds-Averaged Approach	51
3.3.3 Standard k- ϵ Model	52
3.4 Numerical Solution	54
3.4.1 Steps of the Numerical Solution	54
3.4.2 Method of the numerical solution	55
3.4.3 Pressure Interpolation Schemes	56
3.4.4 Pressure-Velocity Coupling	56
3.8 Geometry Construction and Grid Generation	57
Chapter 4	58
Numerical Investigation and Parametric Case Studies	58

4.1 Introduction	58
4.2 Case Study Description	58
4.3 Case Modeling	59
4.3.1 Staff Body Modeling	59
4.3.2 Description of the Meshing of the Domain	59
4.3.3 Mesh Independency Check	59
4.4 Steady State Boundary	63
4.4.1 Modeling of chosen Configurations	65
4.4.2 Using CFD Package	70
Chapter 5	71
Experimental Investigation and Validation	71
5.1 Introduction	71
5.2 Description of the Operating Room Configuration	71
5.2.1 Room Geometry	71
5.3 Measuring Instruments	72
5.4 Measuring Locations	72
5.5 Experimental Procedure	74
5.6 Experimental Results	75
5.7 Assessment of CFD Modelling Validation	77
5.7.1 Introduction	77
5.8 Results	79
5.8.1 Temperature Measurements	79
4.8.2 Velocity Measurements	84
5.8.3 Relative Humidity Measurements	
5.9 Conclusions	93
Chapter 6	94
Results and Discussions	94
6.1 Introduction	94
6.2 Presentation for Each Individual Configuration	94
6.2.1 Procedure of Steady State Results Presentation	94
6.3 Results of Configurations Considered	95
6.3.1 Steady State Results	95

6.3.2 Unsteady State Results	126
Chapter 7	147
Conclusions and Recommendations	147
7.1 Introduction	147
7.2 Conclusions	147
7.3 Recommendations	148
7.4 Recommendations for Future Work	148

List of Figures:

Figure 1. 1 Clean room used for the production of microsystems	13
Figure 1. 2 Particle size vs. particles per foot for various Clean room classes	15
Figure 1. 3 Unidirectional Airflow Pattern for HVAC System Clean Room	20
Figure 1. 4 Non Unidirectional Airflow Pattern for HVAC System Clean Room	
Figure 1. 5 Mixed Airflow Pattern for HVAC System Clean Room	
Figure 1. 6 The design of HVAC systems in Clean rooms is different to those for commercial	al
buildings	
Figure 2. 1 isometric views of an anteroom and an isolation room	27
Figure 2. 2 Schematic of the dentist office	31
Figure 2. 3 Ordinary vertical laminar flow-type	28
Figure 2. 4 Number of adhered particles	28
Figure 2.5 Layout of Clean room under investigation	29
Figure 2.6 Particle counts of sampling location at different occupancy state	30
Figure 2.7 Temperature contours and velocity vector at the test section	30
Figure 2.8 General Layout of the Isolation Room under Investigation	40
Figure 2. 9 The Seven Different Design Configurations of the Isolation Room Ventilation	
System That Are Under Investigation	
Figure 2. 10 Predicted Air Flow Velocity Vectors for Mixing Flow HVAC System. (Case 1))
Figure 2. 11 Predicted Air Contaminant Distribution (ppm) At Breathing Level	40
Figure 2. 12 General view of a standard operating theatre	32
Figure 2. 13 Air velocity vectors within the operating theatre	32
Figure 2. 14 Air temperature contours within the operating theatre	33
Figure 2. 15 Flow of Bacteria Carrying Particles (BCP) released from Staff within the operation	ting
theatretheatre	33
Figure 2. 16 summarizes the PMV and PPD indices for each member of the surgical staff	34
Figure 2. 17 Medical staff (PhD students) simulating a hip surgery during the onsite investig	
Figure 2. 18 Geometry of the numerical model	35
Figure 2. 19 Air velocity field (m/s) on vertical slice ($x = 3.0$) and horizontal slice ($z = 1.2$).	36
Figure 2. 20 Mean age of air in horizontal $(z = 1)$ and vertical $(x = 3.0)$ slices	36
Figure 2. 21 Geometry of the studied system	37
Figure 2. 22 Air temperature field on a horizontal slide (1.4 m from the floor) for the differe	nt
ventilation schemes obtained from the six models	38
Figure 2. 23 Mean age of air on a horizontal slide (1.4 m from the floor) for the different	
ventilation schemes obtained from the six models	39

Figure 3. 1 Compare the accuracy of results of these turbulence models for (Validation)	. 50
Figure 3. 2 Subdivisions of the near-wall region.	
Figure 3.3 .Near-wall treatments in Fluent	
Figure 3. 4 Overview of the segregated solution method.	. 56
Figure 4. 1 General layout of the baseline Clinical Pharmacy – case study	. 58
Figure 4. 2 Configuration of Staff's model.	. 59
Figure 4. 3 Temperature gradient at a vertical line for different mesh interval sizes	. 60
Figure 4. 4 Velocity magnitudes at a vertical line for different mesh interval sizes	. 61
Figure 4. 5 (a) show velocity distribution along vertical line at $(x = 1.5 \text{ m}, z = 2.5 \text{ m})$. 62
Figure 4. 6 Mean skin temperature as a function in activity level, ASHRAE Handbook, 2009.	. 64
Figure 4. 7 1st configuration layout	. 65
Figure 4. 8 2nd configuration layout	. 66
Figure 4. 9 3rd configuration layout	. 67
Figure 4. 10 4th configuration layout	. 68
Figure 4. 11 5th configuration layout	. 69
Figure 5. 1 Clinical Pharmacy configuration	71
Figure 5. 2 Lines of measurements near supply grill	
Figure 5. 3 Validation process	
Figure 5. 4 Temperature at line (1) [measurements versus numerical results	
Figure 5. 5 Temperature at line (2) [measurements versus numerical results	
Figure 5. 6 Temperature at line (3) [measurements versus numerical results	
Figure 5. 7 Temperature at line (4) [measurements versus numerical results]	
Figure 5. 8 Temperature at line (5) [measurements versus numerical results	
Figure 5. 9 Temperature at line (6) [measurements versus numerical results]	
Figure 5. 10 Temperature at line (8) [measurements versus numerical results]	
Figure 5. 11 Temperature at line (9) [measurements versus numerical results]	
Figure 5. 12 Velocity at line (1) [measurements versus numerical results]	
Figure 5. 13 Velocity at line (2) [measurements versus numerical results]	
Figure 5. 14 Velocity at line (3) [measurements versus numerical results]	
Figure 5. 15 Velocity at line (4) [measurements versus numerical results]	
Figure 5. 16 Velocity at line (5) [measurements versus numerical results]	
Figure 5. 17 Velocity at line (6) [measurements versus numerical results]	
Figure 5. 18 Velocity at line (7) [measurements versus numerical results]	
Figure 5. 19 Velocity at line (8) [measurements versus numerical results]	
Figure 5. 20 Velocity at line (9) [measurements versus numerical results]	
Figure 5. 21 Relative humidity at line (1) [measurements versus numerical results]	. 89

Figure 5. 22 Relative humidity at line (2) [measurements versus numerical results]	. 89
Figure 5. 23 Relative humidity at line (3) [measurements versus numerical results]	. 90
Figure 5. 24 Relative humidity at line (4) [measurements versus numerical results]	. 90
Figure 5. 25 Relative humidity at line (5) [measurements versus numerical results]	. 91
Figure 5. 26 Relative humidity at line (6) [measurements versus numerical results]	. 91
Figure 5. 27 Relative humidity at line (7) [measurements versus numerical results]	. 92
Figure 5. 28 Relative humidity at line (8) [measurements versus numerical results]	. 92
Figure 5. 29 Relative humidity at line (9) [measurements versus numerical results]	. 93
Figure 6. 1 : Velocity vectors colored by velocity magnitude (m/s) of the mixing flow HVAC	
system	
Figure 6. 2 (a) Velocity contours (m/s) for 1st configuration: at section (Y = 1.2 m)	
Figure 6. 3 Temperature contours (k) for 1st configuration at sections (Y = 1.2 m)	
Figure 6. 4 Relative humidity contours (%) for 1st configuration at sections ($Y = 1.2 \text{ m}$)	
Figure 6. 5 CFD computed air flow data for 1st configuration: Contaminant contours (ppm) at	
sample level $(Y = 1.2 \text{ m})$	
Figure 6. 6 Path lines colored by velocity magnitude for 2nd configuration	
Figure 6. 7 (a) Velocity contours for 2nd configuration: at section $(Y = 1.2 \text{ m})$	
Figure 6. 8 Temperature contours (k) for 2nd configuration: at sections ($Y = 1.2 \text{ m}$)	
Figure 6. 9 Relative humidity contours (%) for 2nd configuration: at sections ($Y = 1.2 \text{ m}$)	
Figure 6. 10 CFD computed airflow data for 2nd configuration: Contaminant contours (ppm) a	
sample level ($Y = 1.20 \text{ m}$)	
Figure 6. 11 Path lines colored by velocity magnitude for 3rd-100 ACH configuration	
Figure 6. 12 Velocity contours (m/s) for 3rd configuration: at section (Y=1.2m)	
Figure 6. 13 Temperature contours (k) for 3rd configuration: at sections $(Y = 1.2 \text{ m})$	
Figure 6. 14 Relative humidity contours (%) for 3rd configuration: at sections ($Y = 1.2 \text{ m}$)	
Figure 6. 15 CFD computed airflow data for 3rd configuration: Contaminant contours (ppm) a	
sample level ($Y = 1.20 \text{ m}$)	
Figure 6. 16 Path lines colored by velocity magnitude for 3rd-200 ACH configuration	
Figure 6. 17 Velocity contours (m/s) for 3rd configuration: at section (Y=1.2m)	
Figure 6. 18 Temperature contours (k) for 3rd configuration: at section ($Y = 1.2 \text{ m}$)	
Figure 6. 19 Relative humidity contours (%) for 3rd configuration: at section $(Y = 1.2 \text{ m})$	
Figure 6. 20 CFD computed airflow data for 2nd configuration: Contaminant contours (ppm) a	
sample level ($Y = 1.20 \text{ m}$)	106
Figure 6. 21 Path lines colored by velocity magnitude for 3rd-300 ACH configuration	
Figure 6. 22 Velocity contours (m/s) for 3rd configuration: at section (Y=1.2m)	
Figure 6. 23 Temperature contours (k) for 3rd configuration: at section ($Y = 1.2 \text{ m}$)	
Figure 6. 24 Relative humidity contours (%) for 3rd configuration: at section $(Y = 1.2 \text{ m})$	
Figure 6. 25 CFD computed airflow data for 2nd configuration: Contaminant contours (ppm) a	
sample level $(Y = 1.20 \text{ m})$.	109

Figure 6. 26 Path lines colored by velocity magnitude for 3rd-400 ACH configuration	. 109
Figure 6. 27 Velocity contours (m/s) for 3nd configuration: at section (Y=1.2m)	. 110
Figure 6. 28 Temperature contours (k) for 3rd configuration: at section ($Y = 1.2 \text{ m}$)	. 110
Figure 6. 29 Relative humidity contours (%) for 3rd configuration: at section (Y = 1.2 m)	. 110
Figure 6. 30 CFD computed airflow data for 3rd configuration: Contaminant contours (ppm)	at
sample level (Y = 1.20 m)	. 111
Figure 6. 31 Path lines colored by velocity magnitude for 4th configuration	. 112
Figure 6. 32 Velocity contours (m/s) for 4th configuration: at section (Y=1.2m)	. 112
Figure 6. 33 Temperature contours (k) for 4th configuration: at section (Y = 1.2 m)	. 113
Figure 6. 34 Relative humidity contours (%) for 4th configuration: at section (Y = 1.2 m)	. 113
Figure 6. 35 CFD computed airflow data for 4th configuration: Contaminant contours at samp	ple
level (Y = 1.20 m)	. 114
Figure 6. 36 Path lines colored by velocity magnitude for 5th configuration	. 114
Figure 6. 37 Velocity contours (m/s) for 5th configuration: at section (Y=1.2m)	. 115
Figure 6. 38 Temperature contours (k) for 5th configuration: at section (Y = 1.2 m)	. 115
Figure 6. 39 Relative humidity contours (%) for 5th configuration: at section $(Y = 1.2 \text{ m})$. 116
Figure 6. 40 CFD computed airflow data for 5th configuration: Contaminant contours (pap) a	ıt
sample level ($Y = 1.20 \text{ m}$)	. 116
Figure 6. 41 Lines (A & B) selected for comparison of varying ACH	. 117
Figure 6. 42 show the velocity at different ACH at line A	. 117
Figure 6. 43 show the velocity at different ACH at line B	. 118
Figure 6. 44 show the Temperature at different ACH at line A	. 118
Figure 6. 45 show the Temperature at different ACH at line B	. 119
Figure 6. 46 show the relative humidity at different ACH at line A	. 119
Figure 6. 47 show the relative humidity at different ACH at line B	. 120
Figure 6. 48 show the particle concentration at different ACH at line A	. 120
Figure 6. 49 show the particle concentration at different ACH at line B	. 121
Figure 6. 50 show the Temperature Distribution for the different case configurations for line a	A
	. 122
Figure 6. 51 show the temp distribution for the different case configurations for line B	. 122
Figure 6. 52 show the Velocity Distribution for the different case configurations for line A	. 123
Figure 6. 53 show the velocity distribution for the different case configurations for line B	. 123
Figure 6. 54 show the RH %age Distribution for the different case configurations for line A	. 124
Figure 6. 55 show the RH %age for the different case configurations for line B	. 124
Figure 6. 56 show the particle distribution for the different case configurations for line A	. 125
Figure 6. 57 show the particle concentration for the different case configurations for line ${\bf B}$. 125
Figure 6. 58 Velocity contours(m/s) for 3rd configuration and 1moving body at 0.5 Sec	
(Y=1.2m)	. 126
Figure 6. 59 Velocity contours (m/s) for 3rd configuration and 1 moving body at 1 Sec (Y=1.	.2m)
	. 126

Figure 6. 60 Velocity contours (m/s) for 3rd configuration and 1 moving body at 1.5 Sec (Y=1.2m)
Figure 6. 61 Velocity contours (m/s) for 3rd configuration and 1 moving body at 2 Sec
(Y=1.2m)
Figure 6. 62 Particle concentration contours (µg/m3) for 3rd configuration and 1 moving body at
0.5 Sec (Y=1.2m)
Figure 6. 63 Particle concentration contours (µg/m3) for 3rd configuration and 1 moving body at
1 Sec (Y=1.2m)
Figure 6. 64 Particle concentration contours (µg/m3) for 3rd configuration and 1 moving body at
1.5 Sec (Y=1.2m)
Figure 6. 65 Particle concentration contours ($\mu g/m3$) for 3rd configuration and 1 moving body at
2 Sec (Y=1.2m)
Figure 6. 66 Particle concentration contours ($\mu g/m3$) for 3rd configuration and 1 moving body at
2.5 Sec (Y=1.2m)
Figure 6. 67 Temperature contours (K) for 3rd configuration and 1 moving body at 0.5 Sec
(Y=1.2m)
Figure 6. 68 Temperature contours (K) for 3rd configuration and 1 moving body at 1 Sec
(Y=1.2m)
Figure 6. 69 Temperature contours (K) for 3rd configuration and 1 moving body at 1.5 Sec
(Y=1.2m)
Figure 6. 70 Temperature contours (K) for 3rd configuration and 1 moving body at 2 Sec
(Y=1.2m)
Figure 6. 71 Temperature contours (K) for 3rd configuration and 1 moving body at 2.5 Sec
(Y=1.2m)
Figure 6. 72 Velocity contours (m/s) for 3rd configuration and 2 moving bodies at 0.5 Sec (Y=1.2m)
Figure 6. 73 Velocity contours (m/s) for 3rd configuration and 2 moving bodies at 1 Sec
(Y=1.2m)
Figure 6. 74 Velocity contours (m/s) for 3rd configuration and 2 moving bodies at 1.5 Sec
(Y=1.2m)
Figure 6. 75 Velocity contours (m/s) for 3rd configuration and 2 moving bodies at 2 Sec
(Y=1.2m)
Figure 6. 76 Velocity contours (m/s) for 3rd configuration and 2 moving bodies at 2.5 Sec
(Y=1.2m)
Figure 6. 77 Particle concentration contours (µg/m3) for 3rd configuration and 2 moving bodies
at 0.5 Sec (Y=1.2m)
Figure 6. 78 Particle concentration contours (µg/m3) for 3rd configuration and 2 moving bodies
at 1 Sec (Y=1.2m)
Figure 6. 79 Particle concentration contours (µg/m3) for 3rd configuration and 2 moving bodies
at 1.5 Sec (Y=1.2m)

Figure 6. 80 Particle concentration contours (µg/m3) for 3rd configuration and 2 moving bodi	ies
at 2 Sec (Y=1.2m)	137
Figure 6. 81 Particle concentration contours (µg/m3) for 3rd configuration and 2 moving bodi	ies
at 2.5 Sec (Y=1.2m)	137
Figure 6. 82 Temperature contours (K) for 3rd configuration and 2 moving bodies at 0.5 Sec	
(Y=1.2m)	138
Figure 6. 83 Temperature contours (K) for 3rd configuration and 2 moving bodies at 1 Sec	
(Y=1.2m)	138
Figure 6. 84 Temperature contours (K) for 3rd configuration and 2 moving bodies at 1.5 Sec	
(Y=1.2m)	139
Figure 6. 85 Temperature contours (K) for 3rd configuration and 2 moving bodies at 2 Sec	
(Y=1.2m)	139
Figure 6. 86 Temperature contours (K) for 3rd configuration and 2 moving bodies at 2.5 Sec	
(Y=1.2m)	140
Figure 6. 87 particle concentration change with time at line A (Y=1.2m)	140
Figure 6. 88 particle concentration change with time at line B (Y=1.2m)	141
Figure 6. 89 Temp distribution change with time at line A (Y=1.2m)	141
Figure 6. 94 Velocity distribution change with time at line A(Y=1.2m)	144