

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

A DATA BASE INITIATION FOR SEISMIC RESPONSE ASSESSMENT OF EXISTING REINFORCED CONCRETE BUILDINGS IN EGYPT

By

MINA SAMIR PHILIP A. SEIF

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. MAHMOUD A. REDA YOUSSEF

Professor of Properties and
Strength of Materials
Structural Engineering Department
Faculty of Engineering
Cairo University

Dr. MOHAMAD MOHSEN M. EL-ATTAR

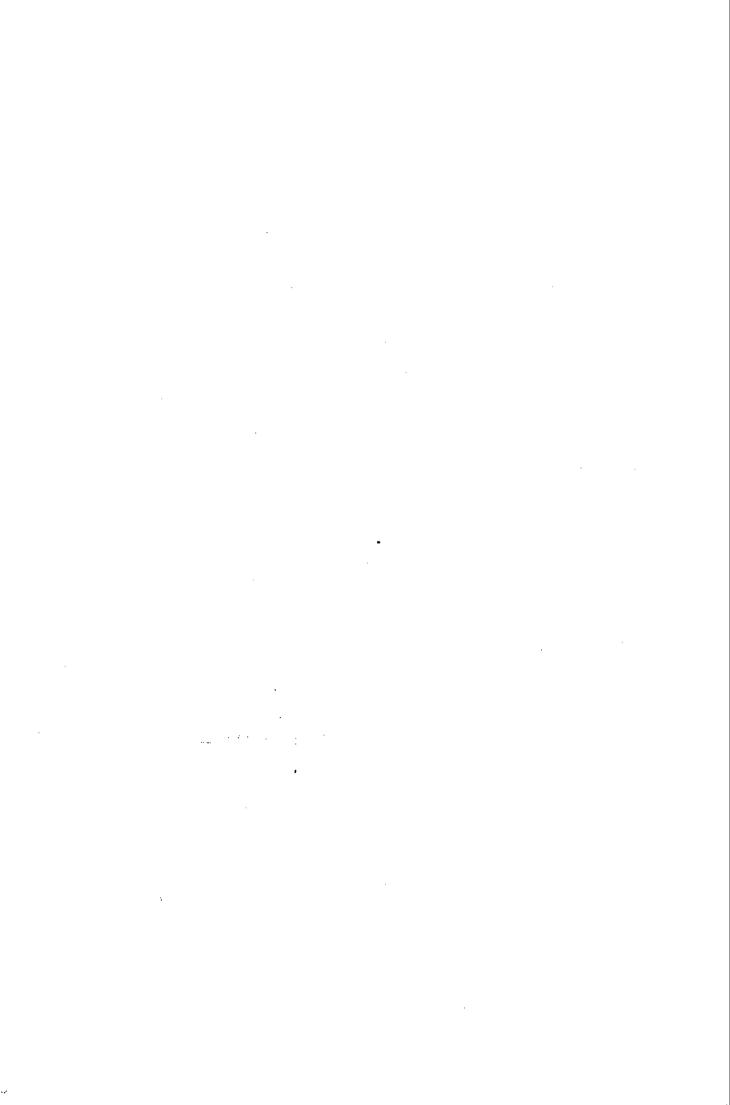
Lecturer

Structural Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING - CAIRO UNIVERSITY GIZA, EGYPT. 2005

A DATA BASE INITIATION FOR SEISMIC RESPONSE ASSESSMENT OF EXISTING REINFORCED CONCRETE BUILDINGS IN EGYPT

By


MINA SAMIR PHILIP A. SEIF

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Approved by the Examining Committee:

> FACULTY OF ENGINEERING - CAIRO UNIVERSITY GIZA, EGYPT. 2005

ACKNOWLEDGEMENT

This research work was conducted under the direct supervision of both; Prof. Dr. Mahmoud Aly Reda Youssef, Professor of Properties and Strength of Materials, Structural Engineering Department, Faculty of Engineering, Cairo University; and Dr. Mohamad Mohsen El-Attar, Lecturer, Structural Engineering Department, Faculty of Engineering, Cairo University.

The author feels indebted to Prof. Dr. Mahmoud Aly Reda Youssef for his indispensable help, valuable guidance, and moral support, without which this research work could not have been accomplished.

The experience gained by the author during the progress of this research work is greatly attributed to the scientific support and guidance of Dr. Mohamad Mohsen El-Attar, who was devoted to supervise, discuss, and revise this thesis.

ABSTRACT

A viable database was initiated for the assessment and evaluation of the seismic response of existing reinforced concrete buildings built in Egypt prior to the establishment of the recent design codes. A group of parameters for the buildings to be studied were set forth, and accordingly different buildings configurations were chosen. The buildings chosen were six- story and ten-story buildings having three to five spans, each of three to five meters length. The Egyptian code (ECP 1970) was used for the design of the buildings.

The structural analysis of this research work was performed using an available nonlinear dynamic structural analysis software package (IDARC2D) through different non-linear pushover and time history dynamic analysis procedures. The pushover performance was evaluated according to the base shear versus deformation curve, while the dynamic performance was evaluated based on the damage index, roof displacement, maximum inter-story drift, and hinge mechanism.

Comparisons were made for the seismic performance of the buildings, and finally some methods of retrofitting were introduced on selected buildings to enhance their seismic behavior by either increasing the strength or ductility of some or all of the structural elements of the buildings.

TABLE OF CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	viii
CHAPTER 1 : INTRODUCTION	
1.1 Background	1
1.2 Goal and Objectives	2
1.3 Research Approach	. 3
1.4 Thesis Organization	4
CHAPTER 2 : REVIEW OF AVAILABLE PREVIOUS PERTINENT RESEARCH WORK	
2.1 Introduction	6
2.2 Seismic Assessment of Buildings	7
2.2.1 General	. 7
2.2.2 Seismic assessment of buildings in Egypt	8
2.3 Nonlinear Structural Analysis Software	10
2.4 Damage Indices	11
2.4.1 Local damage indices	12
2.4.1.1 General	12
2.4.1.2 Park and Ang damage index	14
2.4.1.3 Fatigue-based damage index	15
2.4.1.4 Overview	16
2.4.2 Global damage indices	17

2.5 Retrofitting Techniques for Reinforced Concrete Frame Buildings	18
2.5.1 Conventional methods for retrofitting	18
2.5.2 Strength enhancement techniques	21
2.5.3 Retrofit strategies	21
CHAPTER 3: RESEARCH PROBLEM STATEMENT AND CHOSEN METHODS OF ANALYSIS	
3.1 Introduction	28
3.2 Research Problem Statement	29
3.2.1 Buildings configurations	29
3.2.2 Buildings design	30
3.3 Chosen Methods of Analysis	31
3.4 Ground Motion Selection	31
3.5 IDARC Analysis Software	32
3.5.1 Analysis Modules	34
3.5.2 Stiffness formulation for structural elements	37
3.5.3 Stiffness matrix accuracy enhancement	42
3.5.4 Hysteretic rules	42
3.5.5 Damage indices	43
3.5.6 Moment-Curvature Envelope Computation	44
3.5.6 Input files	44
CHAPTER 4 : NON-LINEAR PUSHOVER ANALYSIS	
4.1 Introduction	74
4.2 Analysis Methodology and Procedure	74
4.2.1 IDARC options for the nonlinear pushover analysis	74
4.2.2 Analysis procedure	79
4.3 Egyptian Code Demand	79
A. A. Analyzaia Pagulta	ġ t