

DIAGNOSIS OF ANKLE IMPINGEMENT SYNDROME WITH MAGNETIC RESONANCE IMAGING

Essay

Submitted for partial fulfillment of Master degree in

Radiodiagnosis

By: Fatma Mamdouh Mohamed M.B.B.Ch

Faculty of Medicine_ Zagazig University

Supervised By

Prof. Dr. Omnia Ahmed Kamal Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Amir Louis Louka Lecturer of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Ain Shams University Faculty of Medicine Radiodiagnosis Department 2016

CONTENTS

	<u>Page</u>
List of Abbreviations	i
List of Figures	ii
List of Tables	vii
Introduction and Aim of Work	1
Anatomy of the Ankle Joint	5
MRI Anatomy of the Ankle Joint	29
Pathology of Ankle Impingement	59
MRI Technique of the Ankle Joint	78
MRI Manifestations of Ankle Impingement Syndrome	98
Summary	160
References	163
Arabic Summary	173

List of Abbreviations

List of Abbreviations

AT : Achilles tendon

ATFL : Anterior talofibular ligament

AITFL : Anterior inferior tibiofibular ligament

CFL : Calcaneofibular ligament
 CT : Computed tomography
 EDL : Extensor digitorum longus
 EHL : Extensor hallucis longus
 FDL : Flexor digitorum longus
 FHL : Flexor hallucis longus
 FR : Flexor retinaculum

ICNL: Inferior calcaneonavicular ligament.

IER : Inferior extensor retinaculum

ITFL : Interosseous tibiofibular ligament

LM : Lateral malleolus MM : Medial malleolus

MRI : Magnetic resonance imaging

PB : Peroneus brevis
PL : Peroneus longus
PT : Peroneus tertius

PTF L : Posterior talofibular ligament
 SER : Superior extensor retinaculum
 STNL : superior talonavicular ligament

TA: Tibialis anterior

TCL : Tibiocalcaneal ligamentTNL : Tibionavicular ligament

TP: Tibialis posteriorTTL: Tibiotalar ligamentTTS: Tarsal tunnel syndrome

≈ LIST OF FIGURES **∞**

NO.	Title	Page
1_1	Anterior view of ankle joint & superior view of talus	7
1_2	Medial ligament of the ankle	9
1_3	Lateral ligament of the ankle	11
1_4	Tarsal tunnel & flexor retinaculum	13
1_5	Extensor & fibular retinacula	15
1_6	Ankle tendons	17
1_7	Anterior and Lateral tendon group	20
1_8	Medial tendon group	22
1_9	Course of posterior tibial nerve in the tarsal tunnel	26
2_1	Sagittal localizer for axial cuts	29
2_2	Axial T1weighted image	32,33, 34
2_3	Coronal localizer for sagittal cuts	35
2_4	Sagittal section at the middle of talus	38,39
2_5	Lateral Sagittal Image	40
2_6	Coronal planes	41
2_7	Posterior Coronal Images	43,44,45
2_8	Mid Plane Coronal Images	46,47

2_9	Anterior Coronal Images	49,50
2_10	3D illustration of the flexor digitorum accessorius longus	52
2_11	Axial T1-weighted MR images within the distal lower leg	52
2_12	The FDAL muscle	53
2_13	Drawing illustrates peroneus quartus tendon	54
2_14	3D rendering demonstrating the accessory soleus muscle	55
2_15	Accessory soleus muscle	55
2_16	Sequential axial T1-weighted MR images, Accessory soleus	56
2_17	The peroneocalcaneus internus	57
2_18	MRI peroneocalcaneus internus	58
3_1	Drawing of the anterolateral ligaments of the ankle	60
3_2	Anterolateral gutter	62
3_3	Drawing shows accessory fascicle anterior tibiofibular ligament (ligament of Bassett)	63
3_4	Lateral radiograph of the ankle showing osteophytes at the dorsal aspect of the talar neck	65
3_5	Drawing of the ankle shows the most common sites for anterior tibiotalar spurs	65
3_6	Diagrams show osseous anatomic structures involved in posterior impingement	68
3_7	Drawing illustrates findings encountered in anteromedial ankle impingement anteromedial	69
3_8	Axial and sagittal MR imaging show posttraumatic subfibular ossicles (Anteromedial bony impingement)	71
3_9	Drawing illustrates site of posteromedial impingement lesion	72

3_10	Drawing of the dorsal foot shows the three most common sites for "deep peroneal nerve entrapment"	76
4_1	Position for examination of ankle and foot using flat and circumferential coils	81
4_2	Extremity and high detail digital coils for foot and ankle imaging	81
4_3	Image planes for foot and ankle MRI	84
4_4	Diagrams illustrate the injection sites for ankle joint MR arthrography	91
4_5	Coronal oblique plane (scout image)	94
4_6	Coronal T1-wieghted SE image from an indirect MR arthrogram	95
5_1	Coronal and axial proton density weighted MR image show posttraumatic synovitis in the ALG	101
5_2	Axial and coronal proton density weighted MR show mature meniscoid lesion (anterolateral impingement)	102
5_3	Oblique axial fat-suppressed and sagittal proton density images with and without fat-suppression showing small ganglion cyst	103
5_4	Sagittal and axial proton density MR images showing arthrofibrotic change of anterior ankle capsule	104
5_5	Anterolateral impingement Sagittal	105
5_6	Ultrasonographic image of anterolateral impingement	107
5_7	Anterolateral ankle impingement (Ultrasound)	109
5_8	Anterior ankle impingement (centroanterior plafond spur)	111
5_9	Anterior ankle impingement (Synovitis)	112

5_10	Anterior ankle impingement (loose bodies)	113
5_11	Anterior ankle impingement (Arthrofibrotic changes)	114
5_12	Clinical anterior ankle impingement in a male soccer player	115
5_13	Anterior osseous impingement (lateral radiograph & axial CT)	116
5_14	Anterior ankle impingement (X-ray, arthroscopy and US)	117
5_15	Anteromedial ankle impingement (synovitis)	119
5_16	Anteromedial ankle impingement (lateral radiograph and sagittal MR show anteromedial spur)	121
5_17	Anteromedial ankle impingement (avulsion fracture fragment)	122
5_18	Anteromedial spur (lateral and oblique radiographas)	124
5_19	Anteromedial spur (US and MR images)	125
5_20	Diagram of posterior ankle impingement (Os Trigonum)	126
5_21	Posterior ankle impingement (Os Trigonum)	128
5_22	Posterior ankle impingement (Stieda's process)	129
5_23	Posterior ankle impingement (synovitis)	131
5_24	Posterior ankle impingement (myxoid change)	133
5_25	US of posterior ankle impingement (FHL tenosynovitis)	134
5_26	Clinical posterior ankle impingement in ballet dancer (lateral radiograph and MR image)	135
5_27	US of posterior ankle ganglion cyst	136
5_28	Clinical case with posteromedial ankle impingement	139
5_29	Posteromedial ankle impingement (avulsion fracture and synovitis)	142

5_30	US and MR images of posteromedial soft tissue ankle impingement	145
5_31	Tarsal tunnel syndrome secondary to a ganglion	150
5_32	Tarsal tunnel syndrome secondary to a post- operative scar	151
5_33	Sagittal MR shows compression of the deep peroneal nerve	153
5_34	Coronal oblique T2 MR image shows medial plantar neuropathy	155
5_35	US image shows tarsal tunnel syndrome	158
5_36	US image shows tarsal tunnel syndrome	159

List Of Tables

≈ LIST of TABLES **∞**

NO.	Table	Page
1	Ankle MR imaging protocol	88
2	Sample imaging protocol for direct MR arthrography of the ankle	95
3	Summary of the best sequences to evaluate the different ankle impingement syndromes	146, 147

Introduction And Aim Of Work

Introduction

Introduction

Ankle impingement is a common condition occurring secondary to sprain or repeated micro-trauma.

Clinical symptoms are chronic pain located in the affected region and limited range of ankle motion.

Types of ankle impingement syndrome include: anterior impingement, which can be subdivided into anterolateral, anteromedial and anterior impingement; posterior impingement, which can be subdivided into posterior and posteromedial impingement. (*Pesquer L.*, *Guillo S. et al.*, 2014)

These clinical abnormalities are related to interposition of more or less calcified synovial tissue in the joint space. They are often associated with bone and soft tissue abnormalities. (*Pesquer L., Guillo S. et al., 2014*).

Despite conventional radiography being usually the first imaging technique performed to assess any potential bone abnormalities, soft tissue affection usually escape and it has disadvantages of improper assessment of cartilaginous, ligamentous and tendinous lesions. (*Dunfee et al.*, 2002)

The CT scan can clearly distinguish osteophytes in cases with bony impingement. It is often the preferred method for identification of bony and arthritic changes if plain radiography is inadequate in evaluating these changes in detail. (*Vaseenon T. and Amendola A.*, 2012)

Ultrasonography is of low cost and noninvasive and can provide the experienced examiner with a wealth of additional information within a short time. It can demonstrate fluids, soft tissues, joints, and bony surfaces.

The power Doppler mode provides information on vascularity (e.g., angiogenesis in synovitis). But it is weak in: inability to penetrate bony or calcified structures, poor visualization of deeper structures and poorer lateral resolution than MRI, with comparable axial resolution. (Szeimies U. et al., 2015)

Conventional MR imaging can accurately detect and localize anterior osteophytes and associated lesions. In addition, MR imaging provides an easy evaluation of any articular cartilage changes, ligamentous injury, and occult bony contusions, and it is also helpful in differentiating extra- from intraarticular causes of ankle impingement. The MR arthrography does not provide much additional

Introduction and Aim of Work

information to diagnose bony impingement. (Vaseenon T. and Amendola A., 2012)

However, for the soft tissue impingement, MR arthrography is highly accurate in the assessment with a sensitivity of 96 %, specificity of 100 %, and an accuracy of 100% when clinical signs of anterolateral impingement are present. (*Vaseenon T. and Amendola A., 2012*)

MRI aids in preoperative planning through identification of reactive synovitis and fibrosis, subchondral marrow edema, collateral ligament complex injury, osteochondral lesions, intra-articular bodies, or osteoarthritis. (*Anderson R. et al., 2014*)

Aim of work

The aim of this study is to evaluate the role of magnetic resonance imaging in assessment of impingement syndrome of the ankle joint.

Anatomy Of The Ankle Joint