Assessment of Left Atrial Functions in Hypertensive Patients with Diastolic Dysfunction using Strain and Strain Rate Imaging

Thesis

Submitted for Partial Fulfillment of Masters Degree in Cardiology

By

Marwa Abdelfattah Hassanin

M.B.B.Ch

Supervisors

Prof. Dr. Adel Zaki

Professor of Cardiovascular Medicine

Cairo University

Prof. Dr. Hossam Eldin Elhossary

Assistant Professor of Cardiovascular Medicine

Cairo University

Dr.Ghada Sayed Mahmoud

Lecturer of Cardiovascular Medicine

Cairo University

Faculty of Medicine
Cairo University
2016

All praise and thanks to **Allah**, whom by His blessing and favor, good works are accomplished.

I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Adel Zaki**, Professor of Cardiology, Faculty of Medicine, Cairo University, for his instructive supervision, continuous guidance and valuable instructions during this work and also all through my way.

Also I owe a great deal of gratitude for **Dr. Hossam Elhosary**, assistant professor of Cardiology, Faculty of Medicine, Cairo University, for his kindness, generosity and great support that had been of great value for finishing this work.

Words can't express my deep and faithful appreciation for **Dr. Ghada Sayed,** Lecturer of Cardiology, Faculty of medicine, Cairo University, for being with me step by step since the beginning of this work and till the end and all through my toughest times she had been a source of support, comfort and encouragement.

Finally, I would like to thank my family especially my father, who kept encouraging me till his last days to complete this work, his great care and support pushed me forward to end what I had started, also I would like to thank my friends and colleagues for their valuable help and co-operation.

Marwa Abdelfattah Hassanin

Assessment of Left Atrial Functions in Hypertensive Patients with Diastolic Dysfunction using Strain and Strain Rate Imaging

Abstract:

Objectives: Diastolic dysfunction is important prognostic indicator for a diverse number of cardiac conditions, The purpose of this study was to investigate the relationship between left atrial (LA) myocardial function and left ventricular (LV) diastolic dysfunction in subjects with hypertension using Strain (SI) and strain rate (SR) imaging.

Methods: Thirty seven control subjects and fourty two hypertensive patients were included in this study, the hypertensive group was subdivided into two groups, depending on the presence or absence of diastolic dysfunction (D.D), the first group included twenty two subjects and represents the hypertensive patients without diastolic dysfunction, and the second included twenty subjects and represents hypertensive patients with diastolic dysfunction.

Results: LA myocardial strain rate parameters were all significantly affected compared to the control group, left atrial function is affected in the hypertensive with D.D group as shown by the reduced average PALS, average SR S, and average SR E and elevated average SR A values.

Conclusion: Speckle tracking derived SR imaging is a useful noninvasive method for quantifying regional LA myocardial function, which is closely associated with different degrees of LV diastolic dysfunction in subjects with preserved LVEF even in the presence of normal standard indexes of LA function.

Keywords: hypertension, left atrium, diastolic dysfunction, strain and strain rate imaging, speckle tracking.

List of Content

	Pages
List of Tables	I
List of Figures	III
List Abbreviation	VI
Introduction & Aim of the Work	1
Review of Literature	
Chapter (1)	6
Left Atrial Anatomy, Physiology and Function	
Chapter (2)	23
Hypertension	
Chapter (3)	38
Diastolic Dysfunction	
Chapter (4)	63
Speckle Tracking, Strain and Strain Rate Imaging	
Patients and Methods	84
Results	99
Discussion	120
Summary & Conclusions	130
Master table	136
References	152
Arabic Summary	1

List of Tables

Tables		Pages
1	Classification of BP, as defined in the American guidelines JNC 7	24
2	Doppler echocardiographic patterns of current echocardiographic	49
	tools in relation to the grading of LV diastolic dysfunction	
3	Normal values for Doppler-derived diastolic measurements	56
4	Problems and Solutions for Tissue-Velocity Based Strain Rate	71
	Imaging	
5	Classification of BP, as defined in the American guidelines JNC 7	85
6	Demographic characteristics of the studied groups	99
7	Demographic characteristics of the hypertensive patients groups	100
8	HR and blood pressure (Bp) of the studied groups	101
9	Conventional Echocardiographic parameters of the studied groups	102
10	Mitral Doppler inflow pattern data	103
11	Tissue Doppler data of studied groups	105
12	Strain and Strain rate (apical 4 C) parameters of studied groups	107
13	Strain and Strain rate (apical 2 C) parameters of studied groups	109
14	Global strain and strain rate parameters of studied groups (apical 4	111
	and apical 2 chamber views)	
15	Average SRE/average SRA ratio of studied groups	112
16	Strain data for LA CSI, atrial volume D, atrial volume S, atrial EF	113
	and LA volume index of studied groups	

17	Correlation between E/A, Septal E'/A', lateral E'/A', E/E' and the	114
	SRE/SRA among hypertensive patients	
18	Correlation between E/A, Septal E'/A', lateral E'/A', E/E', E/SR E	115
10	and the global strain parameters among hypertensive patients	113

List of Figures

Figures		Pages
1	Left atrial (LA) pressure-volume loop showing LA phasic	10
	function and volumes.	
2	Frank Starling curve showing the change in LA volume with	11
	change in pressure	
3	Example of STE-Derived LA Strain	20
4	Showing interaction between vascular endothelial cells and	28
	smooth muscle cells	
5	Renal endothelial cell dysfunction in HTN	30
6	(A) Pulsed Doppler echocardiographic recording of mitral inflow	41
	velocity showing a mid-diastolic flow, L wave (arrow), of 60 cm/s	
	between the E and A filling waves. L wave is due to elevated	
	filling pressure and delayed myocardial relaxation. (B) Tissue	
	Doppler imaging of the septal or medial mitral annulus velocity	
	showing a mid-diastolic movement of the annulus (arrow)	
	corresponding to the L wave of mitral inflow velocity. a' indicates	
	late diastolic mitrial annulus velocity with atrial contraction. e',	
	medial mitral annulus early diastolic velocity	
7	LV and left atrial (LA) pressures during diastole, transmitral	42
	Doppler LV inflow velocity, pulmonary vein Doppler velocity,	
	and Doppler tissue velocity.	
8	Pulsed Doppler mitral filling flow showing	44
9	Mitral valve inflow velocities showing different grades of	49
	diastolic dysfunction	
10	Pulmonary venous flow patterns	53

11	T' D 1 (TD) 1' C (1 1 (1 '/ 1 1	
11	Tissue Doppler (TD) recording from the lateral mitral annulus	55
	from a normal subject aged 35 years (left) (e'=14 cm/s) and a58-	
	year-old patient with hypertension, LV hypertrophy, and impaired	
	LV relaxation (right) (e'= 8 cm/s).	
- 10		
12	Tissue Doppler imaging of mitral annular motion	56
13	Composite figure showing measurement of peak atrial	58
	longitudinal strain using speckle tracking echocardiography from	
	an apical 2-chamber view in a representative subject.	
14	Strain imaging in a Normal Subject Examples of tissue Doppler	69
	imaging velocity, strain rate, and strain curves for a cardiac cycle	
	from a subject with normal cardiac function.	
	Transa suageor with transaction of the contraction	
15	Composite figure showing measurement of peak atrial	74
	longitudinal strain using speckle tracking echocardiography from	
	an apical 2-chamber view in a representative subject.	
16	Peak atrial longitudinal strain (PALS) and peak atrial contraction	78
	strain (PACS) in a representative subject	
17	Peak atrial longitudinal strain measurements in a healthy subject	82
17	Teak autai foligitudinai suam measurements in a healthy subject	02
18	Normal mitral inflow pattern acquired by PW doppler showing E	88
	and A waves	
19	Measurement of IVRT and DT	89
20	Tissue Doppler (TD) recording from the lateral mitral annulus	90
20	from a normal subject	
	nom a normal subject	
21	Strain curve showing the measurements for the 6 atrial segments	92
	in apical 4 chamber view	
	-	
22	Measurement of Peak atrial longitudinal strain (PALS) and time	94
	to peak arial longitudinal strain (TPLS) in a normal subject	
22	Macayanamant of atuain note wayee C. E. and A. in a named which	05
23	Measurement of strain rate waves S, E and A in a normal subject	95

24	Measurement of time to peak S (TTP S), time to peak E (TTP E),	96
	time to peak (TTP A) in a normal subject with the Peak R wave in	
	ECG monitoring being the default reference point in time to peak	
25	Grades of diastolic dysfunction in patients	104
26	Correlation between global SR E and septal E'/A'	116
27	Corrrelation between global SR E and lateral E'/A'	116
28	Correlation between global SR E and E/A	117
29	Correlation between SR E and E/SR E	117
30	Correlation between global SR E and E/E'	118
31	Correlation between global PALS and E/SR E	118
32	Correlation between global PALS and lateral E'/A'	119
33	Correlation between global SR S and E/SR E	119

List of Abbreviations

2D	2 dimensional
AF	Atrial fibrillation
AP4	Apical 4 chamber
AV	Aortic valve
AVC	Aortic valve closure
BMI	Body mass index
BP	Blood pressure
BSA	Body surface area
ССТ	Cardiac computed tomography
CHD	Coronary heart disease
CMR	Cardiac magnetic resonance
CT	Computed tomography
CV	Cardiovascular
CW	Continous wave
DD	Diastolic dysfunction
DHF	Diastolic heart failure
DT	Deceleration time
ECG	Electrocardiogram
EDT	deceleration time of peak E velocity
EF	Ejection fraction
FS	Fractional shortening

GL	Global longitudinal
HFNEF	Heart failure with normal ejection fraction
HR	Heart rate
HTN	Hypertension
IVRT	Isovolumetric relaxation time
IVS	Interventricular septum
JNC	Joint national committee
LA	Left atrium
LA CSI	Left atrial contraction strain index
LAEF	Left atrial ejection fraction
LAKE	Left atrial kinetic energy
LAV	Left atrial volume
LAVi	Left atrial volume indexed to body surface area
LV	Left ventricle
LVEDd	Left ventricular end diastolic dimension
LVEDP	Left ventricular end diastolic pressure
SR A	Atrial Strain Rate in Late Diastole
LVEDV	Left ventricular end diastolic volume
LVESd	Left ventricular end systolic dimension
LVESV	Left ventricular end systolic volume
LVH	Left ventricular hypertrophy
MRI	Magnetic resonance imaging

PA	Pulmonary artery
PACS	Peak atrial contraction strain
PALS	Peak atrial longitudinal strain
PR	Pulmonary regurgitation
PW	Posterior wall
RA	Right atrium
ROI	Region of intrest
SCD	Sudden cardiac death
SD	Standard deviation
SR	Strain rate
SR E	Atrial Strain Rate in Early Diastole
SR S	Atrial Strain Rate Systole
STE	Speckle tracking echocardiography
TDI	Tissue doppler imaging
TPLS	Time to peak longitudinal strain
TR	Tricuspid regurgitation
TTP	Time to peak strain
TTP SR A	Time to peak strain rate A
TTP SR E	Time to peak strain rate E
TTP SR S	Time to peak strain rate S
VTI	Velocity time integral
3	Strain

Introduction

B

The left atrium (LA) plays an important role in the whole cardiac function (*Ying-Ying Liu et al.*, 2011). The left atrium serves multiple functions, acting as a reservoir during ventricular systole, as a conduit for blood from the pulmonary veins to the left ventricle during early diastole, as an active contractile chamber that augments left ventricular filling in late diastole and as a suction source that refills itself in early systole. In total, the atria contribute to 30% of cardiac output (*Liza Thomas*, 2007). So the reservoir, conduit, and contractile functions of the left atrium are integral to overall cardiac performance (*Andrew-To et al.*, 2011).

The active contractile component of the left atrium has an important role in patients with ventricular dysfunction as a 'booster pump' to augment ventricular volume. Augmented left atrial booster function is one of the mechanisms compensating for decreased early filling in patients with reduced left ventricular compliance, whereas a loss of atrial contraction, as a result of atrial fibrillation or ventricular pacing, reduces cardiac output by approximately 15–20% (*Stefanadis et al.*, 2001).

There is significant interplay between left atrial and left ventricular function, such that events during each phase of "left atrial phasic function" are affected by factors from both the left atrium and left ventricle (*Andrew-To et al., 2011*).

Left atrial size is used to be a marker of left ventricular diastolic function (*Dominic-Leung et al.*, (2008), as during diastole, the left atrium is directly exposed to left ventricular pressure that increases with worsening left ventricular diastolic dysfunction. Consequently, left atrial pressure increases in order to maintain adequate left ventricular filling. This results in increased left atrial wall tension and dilatation of the left atrium (*Guan et al.*, 2010). Therefore, left atrial volume provides an integration of the severity and chronicity of left ventricular diastolic dysfunction (*Dominic-Leung et al.*, 2008).

Ø

High blood pressure has a high prevalence in the general population (*Hildo-Lamb et al.*, 1999). Left atrial structural and functional changes occur in patients with hypertension. Left atrial enlargement is commonly found by echocardiography in patients with hypertension and is associated with increased risks for atrial fibrillation and diastolic heart failure (*Kokubu et al.*, 2007).

Previous echocardiographic and radionuclide studies have shown impaired diastolic heart function in hypertension, even in the absence of left ventricular hypertrophy, whereas systolic function is still preserved (*Hildo-Lamb et al.*, 1999).

Diastolic dysfunction plays an important role in the pathophysiology of heart failure, especially in patients with preserved systolic function. It has been demonstrated that different degrees of left ventricular diastolic dysfunction are related to long-term mortality compared with normal patients. Contributing up to 30% of total left