

Ain Shams University Faculty of Engineering Department of Structural Engineering

Capacity of Axially Loaded SHS Columns Strengthened with CFRP Laminates

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering (Structural)

Submitted by **Mostafa Ahmed Atteya**

Bachelor of Science in Civil Engineering (Structural) Faculty of Engineering, Ain Shams University, 2011

Supervised by

Prof. EZZELDIN YAZEED SAYED-AHMED

Professor of Steel Structures -Structural Engineering Department
Ain Shams University

Dr. Amr Abdel Salam Shaat

Associate Professor -Structural Engineering Department
Ain Shams University

July 2017 Cairo-Egypt

Ain Shams University Faculty of Engineering Department of Structural Engineering

Capacity of Axially Loaded SHS Columns Strengthened with CFRP Laminates

A THESIS

Submitted in Partial Fulfilment for the Requirements of the Degree of **MASTER OF SCIENCE**

in Civil Engineering (Structural)

Submitted by **Mostafa Ahmed Atteya**

B.Sc. in Civil Engineering - Structural Eng.-2011 Ain Shams University – Faculty of Engineering

Examiners' Committee:

Prof. Dr. Hesham Sobhy Sayed Khedr Professor of Steel Structures Faculty of Engineering Cairo University	()
Prof. Dr. Nahla Kamal Hassan Mohamed Professor of Steel Structures Faculty of Engineering Ain Shams University	()
Prof. Dr. Ezzeldin Y. Sayed-Ahmed Professor of Steel Structures Faculty of Engineering Ain Shams University	()
Dr. Amr A. Shaat Associate Professor Faculty of Engineering Ain Shams University	()

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Mostafa Ahmed Atteya

Signature

Date:07 November 2017

Researcher Data

Name : Mostafa Ahmed Atteya

Date of birth : 1/11/1988

Place of birth : Great Britain

Last academic degree : B.Sc. in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2011

Current job : Offshore Structural Engineer - Atkins

Acknowledgements

First, I thank GOD who guided and helped me to finish this work in the proper shape. I would like to express my deepest appreciation to Dr. Amr Shaat Associate professor, Faculty of Engineering, Ain Shams University, for his experienced advice, continuous and deep encouragement through all phases of the work.

I would like to express extreme grateful to Prof. Dr. Ezzeldin Yazeed, Professor of steel Structures, Faculty of Engineering, Ain Shams University, for his highly-appreciated effort and support in completing this work.

Finally, I would like to express his deepest gratitude and appreciation to my beloved father, mother and brothers for their continuous support, encouragement and guidance.

Abstract

This thesis describes the methodology adopted in the numerical modeling of Structural Hollow Sections (SHS) cold-formed steel columns of different slenderness ratios under axial compression load and verifying this model against experimental data from (Shaat A. A., 2007). and subsequently using it in parametric studies. The numerical model used was developed considering the material model of cold-formed carbon steel, non-linear stress-strain behavior, initial geometric imperfections, the effect of cold forming by means of applying residual stresses and its equivalent plastic strains, and the interaction between cold-formed SHS and CFRP. The numerical model developed was used to conduct a parametric study to determine the influence of; column's slenderness ratio, different steel material grade, changing steel cross-section, and CFRP reinforcement ratio on the capacity of CFRP-strengthened steel columns. Results and conclusions from this research are then summarized and suggestions for further work given.

The load carrying capacities obtained from the control and strengthened numerical models showed a good match with the experimental results from other researches with a variation in strength less than 6%. While the parametric study showed that the axial load capacity of strengthened columns decreases with increasing member slenderness ratios, while the gain in strength increases with increasing the slenderness ratio

Keywords: SHS, local Imperfections, global imperfections, Residual stresses, cold-formed

Table of Contents

Chapter	1. Introduction
1.	Background
1.1	Objectives of the thesis
1.2	Thesis layout
Chapter	2. Literature Review
2.1	Methods of Strengthening SHS under compression 4
2.2	Numerical modeling of CFRP-Strengthened SHS columns 7
2.2.1	Cold formed SHS steel columns
2.2.2	Finite Element Modeling of CFRP
2.2.3	Continuum Damage Mechanics
Chapter	3. Finite Element Modeling and Verification 19
3.1	Geometric Modeling
3.1.1	Boundary Conditions and displacement imposed on the specimen
	21
3.1.2	Element Type
3.1.3	Mesh Configuration
3.2	Material Models
3.3	Initial Geometric Imperfections
3.4	Residual stresses and associated plastic strains
3.5	Interactions between steel and CFRP

3.6	Damage Stabilization	37
3.7	Analysis Methodology	38
Chapter	r 4. Analysis Results and discussion	39
4.1	Numerical Model Results	39
4.2	Structural Behavior	41
4.2.1	Control Specimen	41
4.2.2	2 Strengthened Specimens	52
Chapter	Parametric Study for CFRP-Strengthened SHS Colun62	nns
5.1	Parameters	62
5.2	Generation and execution of the parametric study	63
5.3	Results and Conclusions	63
5.3.1	Effect of slenderness ratio	64
5.3.2	2 Effect of steel material grade	78
5.3.3	B Effect of CFRP-steel reinforcement ratio	85
5.3.4	Effect of changing cross section	92
Chapter	r 6. Summary and Conclusions	01
Annend	liv A Parametric Study Results	1

List of Figures

Figure 2-1: Strengthened tubular SHS from (Shaat & Fam, 2009)5
Figure 2-2: Local buckling of tested short SHS columns (M.R.Bambach & Elchalakani,
2007)6
Figure 2-3: Manufacturing of press-braked sections (QUACH, 2005)9
Figure 2-4: Predicted residual stresses from coiling, uncoiling, and flattening of steel sheet
(Moen & Schafer, 2009)9
Figure 2-5: Residual stresses from cold-forming of steel sheet from (B. Rossi, S. Afshan, &
L. Gardner, 2013)10
Figure 2-6: Definition of apparent yield stress, effective residual stress, and effective plastic
strain as related to a uniaxial tensile stress-strain curve (Moen & Schafer, 2009) 11
Figure 2-7: Various scales in modeling the damage behavior in composites from (Camanho
& Hallett, 2015)
Figure 2-8: Schematic diagram of the relationship between damage mechanics and
fracture mechanics from (Wohua & Valliappan, 1998)14
Figure 2-9: Schematic diagram for continuum damage model
Figure 2-10: Fracture mechanics modes from (Camanho & Hallett, 2015)
Figure 2-11: schematic showing crack bridging tractions in cohesive zone from (Camanho
& Hallett, 2015)
Figure 2-12: Different formulation of interface elements from (Hallett, Jiang, Khan, &
Wisnom, 2008)
Figure 2-13: Cohesive zone method (Traction-Separation curve) from (Barbero, 2013) 18
Figure 3-1: Specimens cross-sections
Figure 3-2: Specimen test setup
Figure 3-3: Boundary conditions of hinged end
Figure 3-4: Displacement applied at the top hinged end
Figure 3-5: Orientation of the local coordinate system (Abaqus manual)
Figure 3-6: Material Orientation
Figure 3-7: Element Type, Section Points
Figure 3-8: Typical mesh configuration for CFRP-Strengthened steel members
Figure 3-9: Shell thickness rendered
Figure 3-10: Non-linear properties for S355 steels (True stress-strain)

Figure 3-11: Von Mises yield surface in general plane with isotropic hardening model for
S355
Figure 3-12: Local and global geometric imperfection for numerical models, scale factor
for local imperfection is 10 while global imperfection is 15030
Figure 3-13: Residual stresses defined through-thickness in a) the longitudinal direction
and b) transverse direction from coiling, uncoiling and flattening manufacturing
process
Figure 3-14: Equivalent plastic strains defined through-thickness from coiling, uncoiling
and flattening manufacturing process
Figure 3-15: Residual stresses defined through-thickness in a) the transverse direction and
b) longitudinal direction from cold-bending manufacturing process34
Figure 3-16: Equivalent plastic strains defined through-thickness from the cold-bending
manufacturing process
Figure 3-17: Final Residual stresses in corners defined through-thickness in a) the
transverse direction and b) longitudinal direction from cold forming manufacturing
process
Figure 3-18: Typical residual stresses for numerical models
Figure 19: Traction-Separation model and values for cohesive zone model (Fernando et al
2012)
Figure 4-1: Comparison between experimental results and FE results
Figure 4-2: Specimen A1, Axial Load vs. Axial Displacement
Figure 4-3: Specimen A3, Axial Load vs. Axial Displacement
Figure 4-4: Specimen A5, Axial Load vs. Axial Displacement
Figure 4-5: Specimen A1, Axial Load vs. Axial Strain
Figure 4-6: Specimen A3, Axial Load vs. Axial Strain
Figure 4-7: Specimen A5, Axial Load vs. Axial Strain
Figure 4-8: Specimen A1, Axial Load vs. Lateral Displacement
Figure 4-9: Specimen A3, Axial Load vs. Lateral Displacement
Figure 4-10: Specimen A5, Axial Load vs. Lateral Displacement
Figure 4-11: Elements Nomenclature
Figure 4-12: Corner and flat behavior with residual stresses and plastic strains defined as
predefined fields on a uniaxial stress-strain curve47
Figure 4-13: Different stages through load-displacement response of the specimen 49

Figure 4-14: initial state of elements 1, 2, 3, and 4	50
Figure 4-15: Stress path of elements 1, 2, 3, and 4 from stage initial state to stage 1	51
Figure 4-16: Stress path of elements 1, 2, 3, and 4 from stage 1 to stage 2	52
Figure 4-17: Specimen A2, Axial Load vs. axial) Displacement	53
Figure 4-18: Specimen A2, Bond status between CFRP-steel at failure load step	54
Figure 4-19: Specimen A2, Axial Load vs. Axial Strain – compression side	55
Figure 4-20: Specimen A2, Axial Load vs. Axial Strain – tension side	55
Figure 4-21: Specimen A2, Axial Load vs. Lateral Displacement	56
Figure 4-22: Specimen A4, Axial Load vs. Lateral Displacement	56
Figure 4-23: Specimen A4, Bond status between CFRP-steel at failure load step	57
Figure 4-24: Specimen A4, Axial Load vs. Axial Strain	58
Figure 4-25: Specimen A4, Axial Load vs. Lateral Displacement	58
Figure 4-26: Specimen A6, Axial Load vs. Lateral Displacement	59
Figure 4-27: Specimen A6, Bond status between CFRP-steel at failure load step	60
Figure 4-28: Specimen A6, Axial Load vs. Axial Strain	61
Figure 4-29: Specimen A6, Axial Load vs. Lateral Displacement	61
Figure 5-1: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and material gra	ıde
S235	65
Figure 5-2: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and material gra	ıde
S35	65
Figure 5-3: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and material gra	ıde
S420	66
Figure 5-4: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and material gra	ıde
S460	66
Figure 5-5: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and material gra	ıde
S235	67
Figure 5-6: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and material gra	ıde
S355	67
Figure 5-7: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and material gra	ıde
S420	68
Figure 5-8: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and material gra	ıde
S460	68

Figure 5-9: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and material grade
S235
Figure 5-10: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and material
grade S355
Figure 5-11: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and material
grade S42070
Figure 5-12: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and material
grade S460
Figure 5-13: Axial load capacity vs. slenderness ratio for control SHS specimens
(44x44x3.2)71
Figure 5-14: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and CFRP
thickness of c1
Figure 5-15: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and CFRP
thickness of c2
Figure 5-16: Axial load capacity vs. slenderness ratio for SHS 44x44x3.2 and CFRP
thickness of c373
Figure 5-17: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and CFRP
thickness of c0
Figure 5-18: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and CFRP
thickness of c174
Figure 5-19: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and CFRP
thickness of c2
Figure 5-20: Axial load capacity vs. slenderness ratio for SHS 64x64x3.2 and CFRP
thickness of c3
Figure 5-21: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and CFRP
thickness of c075
Figure 5-22: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and CFRP
thickness of c176
Figure 5-23: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and CFRP
thickness of c2
Figure 5-24: Axial load capacity vs. slenderness ratio for SHS 89x89x3.2 and CFRP
thickness of c377

Figure 5-25: Axial load capacity vs. material grade for SHS 44x44x3.2 and CFRP
thickness of c0
Figure 5-26: Axial load capacity vs. material grade for SHS 44x44x3.2 and CFRP
thickness of c1
Figure 5-27: Axial load capacity vs. material grade for SHS 44x44x3.2 and CFRP
thickness of c2
Figure 5-28: Axial load capacity vs. material grade for SHS 44x44x3.2 and CFRP
thickness of c380
Figure 5-29: Axial load capacity vs. material grade for SHS 64x64x3.2 and CFRP
thickness of c080
Figure 5-30: Axial load capacity vs. material grade for SHS 64x64x3.2 and CFRP
thickness of c1
Figure 5-31: Axial load capacity vs. material grade for SHS 64x64x3.2 and CFRP
thickness of c281
Figure 5-32: Axial load capacity vs. material grade for SHS 64x64x3.2 and CFRP
thickness of c382
Figure 5-33: Axial load capacity vs. material grade for SHS 89x89x3.2 and CFRP
thickness of c082
Figure 5-34: Axial load capacity vs. material grade for SHS 89x89x3.2 and CFRP
thickness of c183
Figure 5-35: Axial load capacity vs. material grade for SHS 89x89x3.2 and CFRP
thickness of c283
Figure 5-36: Axial load capacity vs. material grade for SHS 89x89x3.2 and CFRP
thickness of c384
Figure 5-37: Axial load capacity vs. CFRP thickness for SHS 44x44x3.2 and material
grade S23585
Figure 5-38: Axial load capacity vs. CFRP thickness for SHS 44x44x3.2 and material
grade S35586
Figure 5-39: Axial load capacity vs. CFRP thickness for SHS 44x44x3.2 and material
grade S42086
Figure 5-40: Axial load capacity vs. CFRP thickness for SHS 44x44x3.2 and material
grade S460

Figure 5-41: Axial load capacity vs. CFRP thickness for SHS 64x64x3.2 and material	
grade S235	87
Figure 5-42: Axial load capacity vs. CFRP thickness for SHS 64x64x3.2 and material	
grade S355	88
Figure 5-43: Axial load capacity vs. CFRP thickness for SHS 64x64x3.2 and material	
grade S420	88
Figure 5-44: Axial load capacity vs. CFRP thickness for SHS 64x64x3.2 and material	
grade S460	89
Figure 5-45: Axial load capacity vs. CFRP thickness for SHS 89x89x3.2 and material	
grade S235	89
Figure 5-46: Axial load capacity vs. CFRP thickness for SHS 89x89x3.2 and material	
grade S355	90
Figure 5-47: Axial load capacity vs. CFRP thickness for SHS 89x89x3.2 and material	
grade S420	90
Figure 5-48: Axial load capacity vs. CFRP thickness for SHS 89x89x3.2 and material	
grade S460	91
Figure 5-49: Axial load capacity vs. cross section for CFRP thickness of c0 and material	
grade S235	92
Figure 5-50: Axial load capacity vs. cross section for CFRP thickness of c0 and material	
grade S355	93
Figure 5-51: Axial load capacity vs. cross section for CFRP thickness of c0 and material	
grade S420	93
Figure 5-52: Axial load capacity vs. cross section for CFRP thickness of c0 and material	
grade S460	94
Figure 5-53: Axial load capacity vs. cross section for CFRP thickness of c1 and material	
grade S235	94
Figure 5-54: Axial load capacity vs. cross section for CFRP thickness of c1 and material	
grade S355	95
Figure 5-55: Axial load capacity vs. cross section for CFRP thickness of c1 and material	
grade S420	95
Figure 5-56: Axial load capacity vs. cross section for CFRP thickness of c1 and material	
grade S460	96

Figure 5-57: Axial load capacity vs. cross section for CFRP thickness of c2 and material
grade S235
Figure 5-58: Axial load capacity vs. cross section for CFRP thickness of c2 and material
grade S355
Figure 5-59: Axial load capacity vs. cross section for CFRP thickness of c2 and material
grade S42097
Figure 5-60: Axial load capacity vs. cross section for CFRP thickness of c2 and material
grade S460
Figure 5-61: Axial load capacity vs. cross section for CFRP thickness of c3 and material
grade S235
Figure 5-62: Axial load capacity vs. cross section for CFRP thickness of c3 and material
grade S355
Figure 5-63: Axial load capacity vs. cross section for CFRP thickness of c3 and material
grade S420
Figure 5-64: Axial load capacity vs. cross section for CFRP thickness of c3 and material
grade S460100
Figure A-1: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c0 and material grade S235
Figure A-2: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c0 and material grade S355
Figure A-3: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c0 and material grade S42020
Figure A-4: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c0 and material grade S460
Figure A-5: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c1 and material grade S23521
Figure A-6: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c1 and material grade S35521
Figure A-7: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c1 and material grade S42022
Figure A-8: Axial load capacity vs. vertical displacement for SHS 44, CFRP thickness of
c1 and material grade S46022