The Value of Urinary Neutrophil Gelatinase-Associated Lipocalin in the Differential Diagnosis of Acute Kidney Injury in Liver Cirrhosis

Thesis

Submitted For Partial Fulfillment of Master Degree
In Tropical Medicine

By

Mohammad Abdel-Monem Lasheen

(M.B., B.Ch)

Under Supervision of

Prof. Hassan Salah-Eldeen Hamdy, MD

Professor of Tropical Medicine Faculty of Medicine, Ain Shams University

Prof. Ahmed Aly El-Ray, MD

Professor of Tropical Medicine Theodor Bilharz Research Institute

Dr. Mohamed Salaheldin Khalaf, MD

Lecturer of Tropical Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

سورة البقرة الآية: ٣٢

Key words: Acute kidney injury, prerenal, FENa, Neutrophil gelatinase associated lipocalin, acute tubular necrosis, HRS, ascites, liver cirrhosis

Abstract:

Introduction of acute kidney injury was mentioned. Types of AKI in liver cirrhosis was listed. Urinary NGAL and its measurement importance was discussed. Concerning diagnostic performance of uNGAL in differentiating the different types of AKI, uNGAL has good diagnostic performance in the differentiation, uNGAL levels were significantly different in each category of AKI: highest in iAKI, intermediate in HRS and low in prerenal disease. Furthermore, uNGAL levels in patients with prenrenal azotemia were similar to those with normal kidney function.

Urinary NGAL has not only potentiality to detect AKI but also has the ability to differentiate cause of AKI as shown in the current study that revealed uNGAL > 30 ng/mg, 15-39 ng/mg, 39-143 ng/mg and >143 ng/mg had the highest characteristics as a diagnostic marker for detecting AKI, diagnosis of prerenal group, HRS and ATN patients respectively.

First and foremost, praise and thanks must be to ALLAH, Who guides me throughout life.

I would like to express my deepest gratitude and thanks to Prof. Hassan Salah-Eldeen Hamdy, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University for his kind continuous encouragement and great support throughout the work. It was a great honor to be a student working under his supervision.

I am also greatly indebted and grateful to Prof. Ahmed Aly El-Raay, Professor of Hepatology and Gastroenterology, Theodor Bilharz Research Institute, for his great help, valuable time, careful supervision and continuous advices and his efforts that made this work come to light.

I am also greatly indebted to Dr. Mohamed Salaheldin Khalaf, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, it was impossible for me to finish this work without his wise instructions and guidance. No words would ever fulfill my deepest gratitude towards his support.

Also I am really deeply grateful to Dr. Mohammed Abu **El-ezz**, Lecturer of Hepatology and Gastroenterology, Theodor Bilharz Research Institute, for his careful and great support.

I am really thankful to Prof. Dr. Iris Gerges, Professor of Clinical Pathology, Theodor Bilharz Research Institute who took part in exhibiting this work to light.

Last but not least, I can't forget to thank my Parents, for pushing me forward in every step of my life.

Candidate

List of Contents

Subject P	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction	1
Aim of the Work	5
Review of Literature	
Hemodynamics in Cirrhosis	6
Acute Kidney Injury in Liver Cirrhosis	22
Human Neutrophil Gelatinase Associate Lipocali (NGAL)	
Patients and Methods	59
Results	64
Discussion	95
Conclusion	105
Recommendations	106
Summary	107
References	112
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

AKI : Acute kidney injury

AKIN : Acute kidney injury network

ATN : Acute tubular necrosis

CB1 : Cannabinoid 1

CKD : Chronic kidney disease

CSPH : Clinically significant portal hypertension

eNOS : Endothelial NO synthase

ET-1 : Endothelin-1

FENa : Fractional excretion of sodium

FGF : Fibroblast growth factor

GFR : Glomerular filtration rate

HRS : Hepatorenal syndrome

HSCs: Hepatic stellate cells

HVPG: Hepatic venous pressure gradient

ICA : International club of ascites

KDIGO: Kidney disease improving global outcome

Lcn2 : Lipocalin 2

MAP : Mean arterial pressure

MDRD : Modification of Diet in Renal Disease

MELD : Model of end stage liver disease

MMP-9 : Matrix metalloproteinase-9

NGAL : Neutrophil-gelatinase-associated lipocalin

NO : Nitric oxide

NSAIDs : Non-steroidal anti-inflammatory drugs

PDGF: Platelet-derived growth factor

PGE : Prostaglandin E

RAAS : Renin-angiotensin-aldosterone system

SARS : Severe acute respiratory syndrome

SBP : Spontaneous bacterial peritonitis

sCr : Serum creatinine

SECs : Sinusoidal endothelial cells

sGC : Soluble guanylyl cyclase

TGF-b1 : Transforming growth factor-beta 1

VEGF : Vascular endothelial growth factor

List of Tables

Table No	. Title Page	No.
Table (1):	Hemodynamic changes in different vascular beds in Cirrhosis	21
Table (2):	Current diagnostic criteria for acute kidney injury (AKI) in the general population and in patients with cirrhosis	27
Table (3):	International Club of Ascites (ICA-AKI) new definitions for the diagnosis and management of AKI in patients with cirrhosis	31
Table (4):	Desirable characteristics of acute kidney injury biomarkers	55
Table (5):	Expression of NGAL in benign conditions	56
Table (6):	Expression of NGAL in malignant conditions	57
Table (7):	Demographic data	64
Table (8):	Clinical data	65
Table (9):	Pelvi-abdominal ultrasound findings	65
Table (10):	Laboratory investigations	66
Table (11):	Urinary NAGAL (ng/mg)	66
Table (12):	Outcome	68
Table (13):	Diagnosis	68
Table (14):	Comparison between prerenal AKI, HRS and ATN as regard demographic data	68

Table (15):	Comparison between prerenal AKI, HRS and ATN as regard clinical data 69
Table (16):	Comparison between prerenal AKI, HRS and ATN as regard pelvi-abdominal ultrasound findings
Table (17):	Comparison between prerenal AKI, HRS and ATN as regard complete blood picture 70
Table (18):	Comparison between prerenal AKI, HRS and ATN as regard liver function test71
Table (19):	Comparison between prerenal AKI, HRS and ATN as regard kidney function test72
Table (20):	Comparison between prerenal AKI, HRS and ATN as regard Urinary NAGAL (ng/mg)
Table (21):	Comparison between prerenal AKI, HRS and ATN as regard Urinary NAGAL (ng/mg)
Table (22):	Comparison between prerenal AKI, HRS and ATN as regard outcome
Table (23):	Correlation between Urinary NAGAL (ng/mg) and study parameters
Table (24):	Relation between Urinary NAGAL (ng/mg) and demographic/clinical data 82
Table (25):	Validity of Urinary NAGAL (ng/mg) as diagnostic marker for acute kidney injury (vs control) in cirrhotic patients; ROC curve analysis
Table (26):	Validity of Urinary NAGAL (ng/mg) as diagnostic marker for HRS (vs prerenal AKI) in cirrhotic patients; ROC curve analysis

Table (27):	Validity of Urinary NAGAL (ng/mg) as diagnostic marker for ATN (vs prerenal AKI) in cirrhotic patients; ROC curve analysis
Table (28):	Validity of Urinary NAGAL (ng/mg) as diagnostic marker for ATN (vs HRS) in cirrhotic patients; ROC curve analysis
Table (29):	Summary of Urinary NAGAL (ng/mg) as diagnostic marker for AKI in cirrhotic patients
Table (30):	Comparison between alive and died cirrhotic patients with AKI as regard Urinary NAGAL (ng/mg) and MELD89
Table (31):	Validity of Urinary NAGAL (ng/mg) and MELD as predictor marker for mortality in cirrhotic patients with AKI; ROC curve analysis
Table (32):	Univariate logistic regression of potential predictors of mortality in cirrhotic patients with AKI
Table (33):	Multivariate logistic regression of potential predictors of mortality in cirrhotic patients with AKI

List of Figures

Figure No	. Title	Page	No.
Figure (1):	Anatomy of the splanchnic, por hepatic venous circulation		9
Figure (2):	Hepatic stellate cell (HSC) activation	ı	10
Figure (3):	Pathogenesis of hyperdynamic circ in cirrhosis and portal hypertension.		15
Figure (4):	Proposed algorithm for the manager acute kidney injury (AKI) accord International Club of Ascites—AKI AKI) classification	ding to I (ICA-	34
Figure (5):	Extra-renal influences on serum crelevels		37
Figure (6):	Precipitants, mechanisms and correlates of hepatorenal syndron acute tubular necrosis in cirrhosis	ne and	38
Figure (7):	Diagnostic considerations for acute injury (AKI) and the hepatorenal sy (HRS) and evidence-based trooptions	ndrome eatment	42
Figure (8):	Schematic of neutrophil gela associated lipocalin (NGAL) turnover	cellular	48
Figure (9):	Mechanism of bacteriostatic act		50
Figure (10):	The cellular role of neutrophil gel associated lipocalin may be depend the type of molecule it is complexed	dent on	55

Figure (11):	Box-plot shows comparison between cirrhotic patients without AKI and cirrhotic patients with AKI as regard Urinary NAGAL
Figure (12):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard serum creatinine
Figure (13):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard eGFR
Figure (14):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard serum Na
Figure (15):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard urinary Na
Figure (16):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard FeNa
Figure (17):	Box-plot shows comparison between prerenal AKI, HRS and ATN as regard uNAGAL
Figure (18):	Kaplan-Meier plot shows Overall survival stratified according to kidney function groups
Figure (19):	Scatter plot with regression line shows correlation between AST (U/L) and Urinary NAGAL (ng/mg)79
Figure (20):	Scatter plot with regression line shows correlation between ALT (U/L) and Urinary NAGAL (ng/mg)

Figure (21):	Scatter plot with regression line shows correlation between serum creatinine (mg/dl) and Urinary NAGAL (ng/mg)80
Figure (22):	Scatter plot with regression line shows correlation between eGFR (ml/min/1.73m²) and Urinary NAGAL (ng/mg)80
Figure (23):	Scatter plot with regression line shows correlation between FeNa(%) and Urinary NAGAL (ng/mg)
Figure (24):	Scatter plot with regression line shows correlation between length of hospital stay (days) and Urinary NAGAL (ng/mg)81
Figure (25):	Box-plot shows relation between Urinary NAGAL (ng/mg) and serum creatinine83
Figure (26):	Box-plot shows relation between Urinary NAGAL (ng/mg) and eGFR83
Figure (27):	Box-plot shows relation between Urinary NAGAL (ng/mg) and urinary Na84
Figure (28):	Box-plot shows relation between Urinary NAGAL (ng/mg) and FeNa84
Figure (29):	Receiver operating characteristic (ROC) curve of Urinary NAGAL (ng/mg) as diagnostic marker for acute kidney injury (vs control) in cirrhotic patients85
Figure (30):	Receiver operating characteristic (ROC) curve of Urinary NAGAL (ng/mg) as diagnostic marker for HRS (vs prerenal AKI) in cirrhotic patients86

Figure (31):	Receiver operating characteristic (ROC) curve of Urinary NAGAL (ng/mg) as diagnostic marker for ATN (vs prerenal	07
Figure (32):	AKI) in cirrhotic patients	
Figure (33):	Box-plot shows comparison between alive and died cirrhotic patients with AKI as regard Urinary NAGAL (ng/mg)	90
Figure (34):	Box-plot shows comparison between alive and died cirrhotic patients with AKI as regard MELD.	90
Figure (35):	Receiver operating characteristic (ROC) curve of Urinary NAGAL (ng/mg) and MELD as predictor marker for mortality in cirrhotic patients with AKI.	91
Figure (36):	Multivariate logistic regression of potential predictors of mortality in cirrhotic patients with AKI.	94

Introduction

Physicians caring for patients with cirrhosis should recognize the acute or chronic character of renal disease; the causes of renal injury; the clinical conditions leading concomitantly to acute kidney injury (AKI) and liver dysfunction, and the prognostic factors associated with the progression of AKI. Hypovolemia (due to diuretics, hemorrhage, diarrhea), acute tubular necrosis, sepsis, nephrotoxic agents (such as non steroidal anti-inflammatory drugs, aminoglycosides radiological contrasts) and hepatorenal syndrome-type 1 are the most common causes of AKI in cirrhotic patients (Hartleb and Gutkowski, 2012).

Acute kidney injury (AKI) in patients with cirrhosis is common and deadly. Up to 20% of hospitalized patients with cirrhosis develop AKI and once AKI occurs, there is a reported fourfold increased risk of mortality (*Du Cheyronet al.*, 2005).

In cirrhosis, AKI types include prerenal azotemia, hepatorenal syndrome (HRS), and acute tubular necrosis (ATN) (*Garcia-Tsao et al.*, 2008).

Unfortunately these forms of AKI are difficult to be distinguished clinically as serum creatinine (sCr), the clinical