THE USE OF LIVE FOOD FOR FEEDING CYPRINIDAE

By

SUZAN HASSAN AHMED FADDA

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 2004 M. Sc. Agric. Sc. (Animal Nutrition), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

DOCTOR OF PHYLOSOPHY in

Agricultural Sciences (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

THE USE OF LIVE FOOD FOR FEEDING CYPRINIDAE

By

SUZAN HASSAN AHMED FADDA

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 2004M. Sc. Agric. Sc. (Animal Nutrition), Ain Shams University, 2012

1 m	s thesis for Ph.D. degree has been approved by:
Dr.	Mohamed Ahmed Abd-Allah Zaki
	Prof. of Fish Husbandry, Faculty of Agriculture, Alexandria University.
Dr.	Salwa Mahmoud Hamdy
	Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain
	Shams University.
Dr.	Mohamed Fathy Osman
	Prof. Emeritus of Fish Nutrition, Faculty of Agriculture, Ain Shams
	University.

Date of Examination: 2/10/2017

THE USE OF LIVE FOOD FOR FEEDING CYPRINIDAE

By

SUZAN HASSAN AHMED FADDA

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 2004 M. Sc. Agric. Sc. (Animal Nutrition), Ain Shams University, 2012

Under the supervision of:

Dr. Mohamed Fathy Mohamed Osman

Prof. Emeritus of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abdel- Baky Amer

Associate Prof. of Fish Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University.

Dr. Raky Fakhry Attalla Rizk

Research Prof. Emeritus of Fish Nutrition, Aquaculture Branch, National Institute of Oceanography and Fisheries.

ABSTRACT

Suzan Hassan Ahmed Fadda. The use of live food for feeding *Cyprinidae*. Un-published PhD. thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2017.

The study was carried out in fish nutrition lab, fish research station, EL-Kanater El-Khayria, National Institute of Oceanography and fisheries (NIOF), Cairo, Egypt. The study included two experiments: The first experiment was conducted to investigate the effect of dried Chlorella powder as a growth promoter for Sliver carp Hyperophthalmethis molitrix fry reared in circular indoor fiberglass tanks to evaluate growth performance, survival rate and body composition of fish. The Second experiment was conducted to investigate the effect of dried Chlorella powder as a growth promoter for Sliver carp Hyperophthalmethis molitrix fingerlings reared in outdoor concrete rectangular basins to evaluate growth performance, body composition, and physiological parameters of fish. Experiment I: was conducted in 15 circular fiber glass tanks (60 L). Fish were cultured in triplicate groups of 70 Silver carp fries with an average initial body weight of 0.33 ± 0.008 g, for 8 weeks. Four experimental diets (40 % crude protein) were formulated containing 1, 2, 3, and 4% of dried Chlorella powder, compared with control diet. Results showed that average weight gain (AWG), specific growth rate (SGR), relative growth rate (RGR), and average daily gain (ADG) were not affected significantly (P>0.05) by the partially replacement of fish meal with Chlorella; except diet No. 5, which contained 4% of Chlorella, was significantly less than the other diets. Feed conversion ratio, FCR, and survival rate, SR (%) of Silver carp fry were insignificantly (P>0.05) affected by tested diets. Protein productive value (PPV) was increased by increasing Chlorella levels in fish diets, while energy retention (ER) didn't affected significantly by Chlorella level in diets. As the level of Chlorella increased in diets, body composition of fish revealed that moisture, protein, and ether extract were significantly (p<0.05) increased compared with the control diet. Only diet 5 showed less significant differences in body fat. Ash content was increased insignificantly (P>0.05) by inclusion Chlorella in all experimental diets compared with the control. **Experiment II:** was conducted in outdoor 2 concrete ponds (4 m x 10 m x 1.5 m, WLD) each divided to 5 equal parts (4.0x 2.0x 1.5 m) using a net with mesh size of 65mm. Fish were cultured in duplicate groups of 60 Silver carp fingerlings with an average initial body weight of 1.7± 0.03 g and average initial length 5.8 ± 0.6 cm / fish, for 16 weeks. Four experimental diets were formulated containing 1, 2, 3, and 4% of dried Chlorella powder, compared with control diet. Results showed that FBW, WG, ADG, RGR, SGR, PPV, SR, and FL for experimented fish were significantly (p<0.05) affected by tested diets, while feed conversion for tested diets differ insignificantly (P>0.05). The best FCR and PER were recorded for the fish fed diets 4 and 5, hepato-somatic index (HIS) was significantly (p<0.05) affected by experimental diets, however, viscera somatic index (VSI) was insignificantly affected (p>0.05), the highest hepato-somatic index was recorded for fish fed diet 5. The fish chemical analysis revealed that moisture, ash, lipid, and crude protein were significantly (p<0.05) affected by the experimental diets. Blood analysis revealed that hematological parameters and serum biochemical parameters were significantly (p<0.05) affected by experimental diets. The best results were recorded for fish fed 4% Chlorella, where algae incorporation increased the immune response system of cultured fish. Saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and high polyunsaturated fatty acids (HPUFA) were significantly affected with experimental diets (P<0.05). The total amino acids and individual amino acids were significantly affected with experimental diets (P<0.05), where Threonine, Valine, Lysine, Histidine and Arginine values were fluctuated by increasing Chlorella in the diets. While Leucine, Isoliucine and Phenylalanine values were decreased by increasing algae level when compared with control. At the same trend, values of total amino acids were decreased by increasing algae level. This study aimed to study the effect of use of dried Chlorella powder as feed additive on growth performance and immunity of different stages (fry and fingerling) of Silver carp.

Key words: Silver carp, feed additives, *Chlorella*.

ACKNOWLEDGEMENT

First and foremost, all praise to Allah; the Magnificent, the merciful, without whose bless and guidance this work would never have been started nor completed.

I want to thank Dr. Mohamed Fathy Mohamed Osman, Prof. of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his supervision, support, and valuable suggestion throughout the course of this study.

Deep gratitude is due to Dr. Raky Fakhry Atalla, Prof. of Fish Nutrition, National Institute of Oceanography and Fisharies (NIOF), for his supervision, interest guidance, solution all the problems, help, support, kind encouragement and his extraordinary help and his great efforts during the writing and revising throughout the progress of this study.

I heartily thank my supervisor, Dr. Mohamed Abdel- Baky Amer, Assoiate Prof. of Fish Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his supervision, support, and his advices throughout the course of the study.

Special thanks to my parents for their patience, unlimited support and enthusiasm throughout my life and especially during the journey to complete this work.

To my lovely son Zyad, who I would dedicate this work to him to be proud of his mother.

I would also like to express my great thank to all my colleagues and friends who supported me during my work.

CONTENTS

	Page
LIST OF TABLES	IV
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. General overview	5
2. Cyprinids	5
3. Silver Carp, <i>Hypophthalmichthys molitrix</i>	6
3.1. Feeding habits and biology of Silver carp	7
3.2. Habitat of Silver carp	8
4. Fish feeding	8
4.1. Live food	8
4.2. Artificial diet	8
5. Nutrient requirements for carp	9
5.1. Protein and amino acid requirements	9
5.2. Lipid and fatty acid requirements	9
6. Feed additives	10
7. Algae	12
7.1. Selection of algae	14
7.2. Nutritive value of algae	14
8. Chlorella algae	15
8.1. Nutritive value of <i>Chlorella</i>	16
8.2.1. Amino acids of <i>Chlorella</i>	17
8.2.2. Fatty acids of <i>Chlorella</i>	17
9. Growth performance of fish	17
10. Chemical composition of Silver carp	20
10.1. Fatty acids of Silver carp	20

	Page
10.2. Amino acids of Silver carp	22
11. Blood assay	22
11.1. Serum levels of IgM	25
MATERIALS AND METHODS	27
1. Experimental facility	27
2. Preparing of dried <i>Chlorella</i> powder	27
3. First experiment (fry stage)	27
3.1. Experimental design	27
3.2. Experimental diets (first stage)	28
4. The second experiment (fingerling stage)	28
4.1. Experimental design	28
4.2. Water quality	30
4.3. Experimental diets of the second experiment	30
4.4. Proximate chemical analyses	32
4.4.1. Amino acids analysis for fingerlings and diets	33
4.4.2. Fatty acids analysis for fingerlings and diets	33
4.5. Hematological parameters	33
4.5.1. Sampling procedure	33
4.5.2. Blood assays	34
4.6. Biological indices	35
4.6.1. Body indices.	35
4.7. Statistical analysis	35
RESULTS AND DISCUSSION	37
1. The first experiment (fry stage)	37
1.1. Growth performance and survival rate fish fry	37
1.2. Body composition of Silver carp fry	39

	Page
2. Second Experiment (fingerling stage)	42
2.1. Growth performance and survival rate of fingerlings	42
3. Biological indices	46
4. Fingerlings chemical analysis	46
5. Biochemical analysis of experimental fish and diets	51
5.1. Fatty acid profile	51
5.2. Amino acid	54
5.2.1. Essential Amino Acid (EAA) profile	54
5.2.2. Non-Essential Amino Acid (NEAA) profile	57
6. Hematological parameters	59
CONCLUSION	67
SUMMARY	69
REFERENCES	73
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Essential and non-essential amino acid profiles of <i>Chlorella</i>	18
2	Formulation and chemical composition of the first experimental diets, fry stage (% dry matter bases)	29
3	Formulation and chemical composition of the second experimental diets, fingerling stage (% dry matter bases)	31
4	The effect of different levels of dried algae; <i>Chlorella vulgaris</i> on growth performance and feed utilization of Silver carp; <i>Hypophthalmichthys molitrix</i> , fry	38
5	The effect of different levels of dried <i>Chlorella</i> vulgaris on body composition of Silver carp fries (% dry matter bases)	40
6	The effect of different levels of dried <i>Chlorella vulgaris</i> on growth performance and feed utilization of Silver carp fingerlings	43
7	Liver and gut somatic indices of Silver carp fingerlings at the end of the experimental period (112 days)	48
8	Body composition of Silver carp fingerlings at start and end of the experimental period (112 days)	49
9	Fatty acid profile of experimental diets of the second experiment, fingerlings stage	51
10	Fatty acid profile of reared Silver carp fingerlings stage	52
11	Amino acid profile of experimental diets of the second experiment, fingerlings stage	55